
Copy I of 22 copies

00
Co

4N

IDA MEMORANDUM REPORT M-241•I

PROCEEDINGS OF THE THIRD IDA WORKSHOP ON
FORMAL SPECIFICATION AND VERIFICATION OF Ada*

* 14-16 May 1986

Editors:
W.T. Mayfield

John Chludzinski
John McHugh

S.R. Welke
0k

August 1986

"S E P 1 2 199 0

Prepared for 1.
, Ada Joint Program Office

DISTRIBUTIO N StLATEENA
Apprcn; rl frPublic release,

Dis~r'!-,u Uon Unlixited

0 4INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311-1772

*Ada is a registered trademark of the U.S. Government, Ada Joint Program Office.

O u) (jj i IDALogNo.NO "M3

DEFINITIONS
IDA publishes the following documents to report the results of its work.

Reports
Reports are the most authoritative and most carefully considered products IDA publishes.
They normally embody results of major projects which (a) have a direct bearing on
decisions affecting major programs, (b) address issues of significant concern to the
Executive Breanch, the Congress and/or the public, or (c) address issues that have
significant economic implications. IDA Reports are reviewed by outside panels of experts
to ensure their high quality and relevance to the problems studied, and they are released
by the President of IDA.

Group Reports

Group Reports record the findings and results of IDA established working groups and
panels composed of senior individuals addressing major Issues which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals
responsible for the project and others as selected by IDA to ensure their high quality and
relevance to the problems studied, and are released by the President of IDA.

Papers
Papers, also authoritative and carefully considered products of IDA, address studies that
are narrower in scope than those covered in Reports. IDA Papers are reviewed to ensure
that they most the high standards expected of refereed papers In professional journals or
formal Agency reports.

Memorandum Reports
IDA Memoreadum Reports are used for the convenience of the sponsors or the analysts (a)
to record substantive work done in quick reaction studies, (b) to record the proceedings of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record date developed In the course of an Investigation, or (e) to forward
Information that is essentially unanelyzed and unavaluated. The review of IDA
Memorandum Reports is suited to their content and Intended os.

IThe work reported In this document was conducted under contract MDA 03 4 C 0031 for
the Department of Defense. The publication of this IDA document does not indicate
endorsement by the Department of Defens, nor should the contents be construed as
reflecting te official position of that Agency.

This Memorandum Report Is published In order to make available tie material It contain
fur the ue and convnance of Intrested parties. The material has not necessarly been
completely ealefoed and ana"ld, nor subjected to formal IDA review.

[• * 30isitt o eeneAayl

The Goverement of the United SaN ten grnted on unlloted 1lcee to reprduce Idis

Ape for public olease; unlmied dib n.

1-ori Approved

REPORT DOCUMENTATION PAGE oN .0704-0188
PublIic reportng brden for this collection o., iruorrmion is estimatedl to aversrae I hoi- per res n.e, inzluding the tjme fotrl vler,l. i J.g 1ru oMl, Wb '%hjn eX,,L Ing d. ' a e,
g nherig and mainuaininj the: dhn ncedet ,an completing and miminewg the collection of nformhtion. Send cornrrint regart.ing Lh- buruen CSLMbIC or -,= other p,"t o:, L.
coi;ecuon of information,, including suggestions for rmduci-4 this burden. to Wash "ington Heduzlu"r Ser'.icm. Directorate tor lnlormnu or. Operations end Renorts, 12 :5 JLt -,,
Davis IhhaSuite 120-4. Ariigtri, VA 22202-430r2, and to the Office of Misagerrent tind budget. lapc'-ork Reduction Prowct (0704€.-0 1 8), W'h.hmgtn. DC 2050--

1. A(GENCY USE ONLY (Leave blank) 2. REPO)RT DATE 3. REPORT TYPE AND DATES COVERED

August 1986 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Proceedings of the Third IDA Workshop on Formal Specification and MDA 903 84 C 0031
Verification of Ada, 14-16 May 1986

T-D5 -304

6. Au TIOR(S)

W.T. Mayfield, John Chludzinski, John McHugh, S.R. Welke

7. PERFORMING ORGANIZAT1.ON NAME(S) AN) ADDRESS(ES) 8. PERFOR\MING ORGANIZATION REPOR"

NUMBER

Institute for Defense Analyses (IDA) IDA Memorandum Report M-
1801 N. Beauregard Street 241
Alexandria, VA 22311-1772

9. SPONSORING/MONITORL NG AGENCY NAME(S) AND ADDRESS(FS 1 10. SPONSORING/NIONITfORIN(.G AGENCY

Ada Joint Program Office (AJPO) REPORTNUMBER

The Pentagon, Room 3D1".9
Washington, D.C. 20301

11. SU'PLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release, unlimited distribution. 2A

13. ABSTRACT (Maximum 200 words)

The Third IDA Workshop on Formal Specification and Verification of Ada was conducted at the Research
Triangle Institute, Research Triangle Park, North Carolina on May 14-15, 1986. The theme of the workshop
was "Researching Verifiable Ada Systems by 1990" and addressed the following issues: (1) advances in
verification technology, (2) adaptation of current technology in Ada verification systems and methods, (3)
broadening the base of support for work in Ada verification, and (4) encouraging the participation by larger
segments of both the Ada and the verification communities.

A detailed exposition of the Ada formal definition being developed by the European Economic Community.
This exposition took the form of a series of tutorial presentations, enclosed in this document, on various aspects
of the dynamic and static semantics of the definition and its underlying formalisms. Dr. Harlan Mills from
IBM's Federal Systems Division was the keynote speaker.

14. SUBJECT TERMS IS. NUMBER OF PAGES
Ada Programming Language; Verification; Specification; Secure Systems; 620
Semantics; Concurrency; Computer Security; Software; Support Library. 16. PRICE CODE

17. SECURrrYCLASSIFICATION I. SECURITY CLASSIFICATION 19. SECURiTY CLASSIFICATION 20. LIMITAT1ON OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18

298-102

IDA MEMORANDUM REPORT M-241

PROCEEDINGS OF THE THIRD IDA WORKSHOP ON
PORMAL SPECIFICATION AND VERIFICATION OF Ada

14-16 May 1986

Editors: Accession For

W.T. Mayfield LV'-'is GPA&I

John Chludzinski DTIC TA?,

John McHugh Unn:ouioed El
JusjtificationS.R. Welke

By_
Distribution/

Availability Codes
August 1986 | Avail --and/or

Dist Special

IDA
INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-D5-304

ACKNOWLEDGMENTS

The Institute for Defense Analyses would like to thank all those who attended the Third
IDA Workshop on Formal Specification and Verification of Ada, and in particular, those
who gave time to prepare presentations of their work. We would like to express special
thanks to Dr. Wooten for the use of Research Triangle Institute facilities and Ms. Sandy
Waters for her invaluable assistance as workshop adminstrator.

-

0

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. i

WORKSHOP SUMMARY .. 1
O verview ... 1
T he K eynote A ddress .. I
C ontributed Papers 2
The Draft of the European Formal Definition of Ada ... 6
Concluding Rem arks ... 7

Human Verification in Ada (Paper) .. 9
Human and Machine Ada Verification (Presentation) .. 15

Harlan D. Mills, IBM Corporation

Applying Semantic Description Techniques to the CAIS (Paper) 21
Applying Semantic Description Techniques to the CAIS (Presentation) 51

Timothy E. Lindquist, Arizona State University
Roy S. Freedman, Polytechnic University
Bernard Abrams, Grumman Aircraft Systems
Larry Yelowitz, Ford Aerospace

MAVEN: The Modular Ada Validation Environment (Paper) 71
MAVEN: The Modular Ada Verification Environment (Presentation) 89

Norman H. Cohen, Softech, Inc.

Software Hazard Analysis and Safety Verification Using Fault Trees (Paper) 127
Verification of Ada Programs for Safety (Presentation) .. 145

Nancy G. Leveson, University of California, Irvine

A Proof Rule for Ada (Paper) ... 173
A Proof Rule for Ada (Presentation) .. 187

Ryan Stansifer, Purdue University

Revisiting Axiomatic Exception Propagation (Paper) .. 209
Revisiting Axiomatic Exception Propagation (Presentation) .. 223

Timothy E. Lindquist, Arizona State University

Program Development by Specification and Transformation (PROSPECTRA)
(P aper) ... 2 39

European Strategic Programme for Research in Information Technology

The PROSPECTRA Project (With an Emphasis on Verification) (Paper) 279
Andrew D. McGettrick, University of Strathclyde

iii

Program Development by Specification and Transformation (Presentation) 293
B. Krieg-Brueckner, Bremen
H. Ganzinger, Dortmund
M. Broy, Passau
R. Wilhelm, Saarlandes
A. McGettrick, University of Stratheclyde
I. Campbell, SYSEA LOGICIEL
G. Winterstein, SYSTEAM
L. Treff, SYSTEAM •

On the Use of Semantic Specification for the Verification and Validation of Real
Tim e Softw are (Paper) ... 313

On the Use of Semantic Specification for the Verification and Validation of Real Time
Software (Presentation) .. 343

Patrick de Condeli, CR2A et Aerospatiale/Space Division

An Empirical Study of Testing Concurrent Ada Programs (Paper) 371
An Empirical Study of Testing Concurrent Ada Programs (Presentation) 401

Huo-Chung Tai, North Carolina State University
Richard H. Carver, North Carolina State Univeristy
Evelyn E. Obaid, San Jose Sate University

Logical Foundations and Formal Verification (Paper) .. 417
R.B. Jones, ICL Defense Systems (UK)

Trusting Compilers -- A Pragmatic View (Paper) .. 441
Trusting Compilers -- A Pragmatic View (Presentation) .. 447

Scott Hansohn, Honeywell Secure Computing Technology Center

An Introduction to the Draft Formal Definition of Ada (Paper) 459
Egidio Astesiano, Universita' di Genova
Jan Storbank Pedersen, Dansk Datamatik Center

The Draft Formal Definition of Ada: An Introduction (Presentation) 471
Jan Storbank Pedersen, Dansk Datamatik Center

The Draft Formal Definition of Ada: Trial Definition of the Static Semantics (Presentation) 481
Jan Storbank Pedersen, Dansk Datamatik Center

The SMoLCS Methodology and its Application to the Ada FD -- Dynamic Semantics
(Presentation) .. 511

Egidio Astesiano, Universita' di Genova
SMOLCS Methodology of Specification (Presentation) ... 539

Egidio Astesiano, Universita' di Genova
Gianna Reggio, Universita' di Genova
Martin Wirsing, University of Passau, W. Germany
C. Bendix Nielsen, DDC, Denmark
J. Storbank Pedersen, DDC, Denmark
A. Giovini, DDC, Denmark
F. Mazzanti, DDC, Denmark
E. Zucca, DDC, Denmark
A. Fantechi, DDC, Denmark
P. Inverardi, DDC, Denmark

iv

The Draft Formal Definition of Ada: Other Dynamic Semantics Aspects (Presentation) 565
Jan Storbank Pedersen, Dansk Datamatik Center

Formal Definition, Specification, and Verification (Presentation) 593
Egidio Astesdiano, Universita' di Genova

APPENDIX A LIST OF ATTENDEES A-1

0

0

0

0

10

V

0

Workshop Summary

Overview

The Third Institute for Defense Analyses (IDA) Workshop on Ada Verification was
conducted May 14-16, 1986, at the Research Triangle Institute, in the Research Triangle
Park, North Carolina. Unlike the preceding workshops, the third was structured more as a
symposium, with a keynote speech and contributed papers occupying the first day and a
half of the meeting. The remaining two half days were given over to a detailed exposition
of the Ada formal definition being developed by the European Economic Community. This
exposition took the form of a series of tutorial presentations on various aspects of the
dynamic and static semantics of the definition and its underlying formalisms.

The theme of the workshop was "Reaching Verifiable Ada Systems by 1990". The
objectives were:

1) to address advances in verification technology,

2) to continue the adaptation of current technology in Ada verification systems and
methods,

3) to identify the road map for future basiclapplied research in Ada verification
technology,

4) to broaden the base of support for work in Ada verification, and

5) to encourage participation by larger segments of both the Ada and the
verification communities.

The remainder of this introduction will summarize and comment on the papers presented in
each session.

The Keynote Address

The workshop was extremely fortunate to have as its keynote speaker, Dr. Harlan
Mills from IBM's Federal Systems Division (FSD). Dr. Mills has long been advocating the
introduction of mathematical rigor into the software engineering process and has been
leading a quiet revolution to introduce, within FSD, a programming methodology based on
formal verification at the unit level and statistical testing at the system level. Known as the
"Cleanroom" methodology, the technique is being adopted throughout FSD with training
being done in "top down" fashion (i.e., management first). In fact, much of the impetus
and support for the development of the "Cleanroom" methodology is derived from

* management's conviction that "verification methodology is an especially potent and force
for effective intellectual and management control of software development."

IBM was fortunate, in that the top managers at FSD had a good background in mathematics
and were both receptive to the new methodology and able to understand and apply it. By
introducing the cleanroom techniques downward through the management structure, FSD
has ensured that support for the techniques exists before they are applied at the project
level. The common, but unfortunate reaction of a first line manager to a technique
proposed by an employee just back from a training course -- "That's interesting but we
don't do it that way here." is thus avoided.

Dr. Mills' talk provided some background and anecdotal experience on the method
and its application. Several interesting points arose in the talk and discussion which
followed:

1) The volume of specification exceeds the volume of code by a large factor, often
as much as 5 or 6 lines of specification per line of code.

2) A similar ratio is observed for the verification arguments.

3) The functional approach used avoids problems with pre- and post-conditions,
such as: P {200 pages of code} Q.

4) It also avoids problems with excess logical notation for unchanged state •
components.

Following the presentation, Dr. Mills was asked about the problem of formal
specifications being as complicated as source code. From experience, Dr. Mills believed
the biggest gain is that formal specifications remove iterations and sequences, both of
which are more difficult than people think. He suggested reading Structured Programming:
Theory and Practice by Linger, Mills, and Witt (Addison Wesley, 1979) to obtain a more
complete presentation of this issue.

Dr. Mills concluded his talk with regrets that he was unable to stay for the
remainder of the workshop, and he offered to use his influence wherever possible to assist
the community represented by the workshop in obtaining research funding. 0

Contributed Papers

Dr. Timothy Lindquist
Arizona State University
"Applying Semantic Description Techniques to the CAIS"

Dr. Lindquist introduced the CAIS and presented a paper discussing the need for
and the problems with a formal semantic description of the CAIS. Formalism is necessary
because the general, if not universal, rule is that natural language descriptions tend to be
verbose, ambiguous, and incomplete. The paper covers the three approaches of the
authors: operational semantics (abstract machine), axiomatic semantics (algebraic), and
denotational semantics. Not surprisingly, the paper concluded that no single formal
method will uniformly satisfy all the needs for a formal definition of the CAIS, and thus, a
combination of methods is required.

2

Dr. Norman Cohen
SofTech, Inc.
"MAVEN"

Di,. Cohen presented a paper on the Modular Ada Validation Environment
(MAVEN), an environment to provide module-by-module validation for Ada libraries of
reusable code. The paper outlined some of the features supported by the environment: a)
validation together with verification (formal correctness) for mission critical software, b)
integration of multiple validation approaches, c) assistance for writing specifications, and
d) libraries of validated reusable Ada software.

Dr. Cohen believed MAVEN offers an excellent framework for the specification,
design, and implementation of Ada software. MAVEN provides a practical role for
verification and makes a continuum of validation methods available. Dr. Cohen hopes that
exposure to formal methods will encourage industry and academia to learn about these
techniques. However, he warned against a premature implementation of this nascent idea.

After Dr. Cohen's presentation, there were challenges to his module-by-module
approach to validation. One comment was that verifying modules before putting them into
a library is impractical because of the need to modify modules before reuse and to reverify
every modified module. Another comment was that modules cannot be clearly and
completely specified. It was mentioned that Kowalski once said he never got the
specifications right the first time; Paines later said he never got the specifications "right".

0 Dr. Nancy Leveson
University of California at Irvine
"Verification of Ada Programs for Safety"

In a well received talk, Dr. Leveson discussed the possibilities of using formal
verification techniques to examine safety properties of systems. She pointed to the need for

40 safety concerns in a continually growing number of computer applications (e.g., monitor
and/or control of physical processes or mechanical devices). Dr. Leveson discussed
several real examples of supposedly "correct" software. She explained how all too often,
programs, which are verified as being correct with respect to some set of specifications,
exhibit unacceptable behavior with respect to the actual requirements. Consequently,
several alternatives were considered:

1) don't build the systems, which may actually be a good idea at times, but most

often is unrealistic,

2) take more of a "systems" view, or

* 3) approach system reliability with a less "absolute" view.

Further, it was pointed out that making software "safe" sometimes makes it unreliable, and
that every system has some measure of inherent risk associated with its use.

Dr. Leveson also noted that many of the issues of "software hazard analysis" are
* not well understood and need further research. Most of the work to date has centered

around fault tree analysis, started in the 1960's at Bell Laboratories. Dr. Leveson pointed

3

to one of the weaknesses of fault tree analysis: the events symbolized by the nodes are
assumed to be mutually independent.

At the end of the presentation, while summarizing her thoughts, Dr. Leveson drew
a diagram to visualize her concerns. The diagram indicated that the state space of a process
may be partitioned into correct states and incorrect states, with respect to a set of
specifications. Within both the correct and incorrect state spaces, there may exist unsafe
states. What is needed are more precise ways of defining these unsafe states and better
mechanisms for avoiding them during execution of the program.

Dr. Ryan Stansifer
Purdue University
"A Proof Rule for Ada"

Dr. Stansifer presented a paper giving a new proof rule for loops with explicit exit
statements. The exit statements may cause control of the program to exit the current loop
or any of the outer nested loops. This work gives attention to non-sequential control flows
and examines a single construct closely akinned to the Ada loop mechanism.

In addition to the work done on the proof rule, Dr. Stansifer presented his work in
the area of generating verification conditions with attribute grammars. He expressed the
opinion that, by 1990, it will be feasible to have proof rules for all of Ada.

After his presentation, Dr. Stansifer was asked whether attribute grammars are
better than current methods (e.g., GYPSY) for generating verification conditions, or
whether they are merely a different means. He responded that attribute grammars are a
different means which are not necessarily better.

Dr. Timothy Linquist
Arizona State University
"Reviewing Axiomatic Exception Propagation"

Dr. Lindquist presented a paper discussing an axiomatic approach to exception
specifications that avoids the need for augmented specifications. The main motive for this
work was to provide a better mechanism for representing the semantics of exception
propagation. This work gave further attention to non-sequential control flows, as did Dr.
Stansifer's work on proof rules for an Ada-like loop construct, and examined the Ada
exception mechanism.

There was a question as to whether or not this method was an attempt to remove the
abnormal case from the specifications in order to preserve the appearance of normalcy. Dr.
Lindquist responded that it was not, and that it depended on the context of the dynamic
calling structure. It was also pointed out that this method is presently restricted to a
taskless subset of Ada.

Dr. A. D. McGettrick 0

University of Strathclyde, Scotland, U.K.
"PROSPECTRA"

4

Dr. McGettrick summarized the PROSPECTRA (PROgram development by
SPECification and TRAnsformation) project now in development under the auspices of
the European ESPRIT program. The PROSPECTRA system will provide a rigorous
method and environment for the development of "correct" software. In particular, the
PROSPECTRA project plans to use the Ada/ANNA program transformation technique for
the development of validated software. When implemented, the environment will rely on a
knowledge base of proven transformation scripts to be used interactively by the
programmer.

Dr. Peter de Bondeli
Conception et Realisation d'Applications Automatisees (CR2A) and Aerospatiele
"Use of Semantic Specifications for the Validation and Verification of Real-Time Software"

40 Dr. de Bondeli presented a paper outlining a Predicate-Transition Petri Net (Pr-T
Net) approach to the analysis of concurrency, in particular, the Ada model of concurrency.
The purpose of this work is to analyze the behavior of software designed for real-time
applications and to show that verification of real multi-tasking programs written in Ada is
feasible, though difficult. This system is applicable to the analysis of concurrency in
general, but most applications are more likely to be real-time than simply concurrent.

Some members of the workshop asked if there was an advantage to reasoning with
Petri Nets over reasoning directly with Ada primitives. Dr. de Bondeli responded that by
dealing with Ada primatives, the analysis is bound to a particular implementation; it does
not have the generality of the Petri Net analysis. Additionally, the Ada structures required
to implement a relatively simple notion are quite complex.

Another advantage of using Petri Nets is the redundancy resulting from first
designing the communication requirements with Petri Nets followed by an implementation
in Ada. It is then possible to verify the Petri Net design with Ada, and subsequently verify
Ada design with Petri Nets. For people who are familar with Ada, Ada may seem more
natural; but, the goal is an exact formalism for everyone, not just the small community of
Ada users.

Editor'snote: Often in our quest for improvements in formal methods, we forget that most
programmers and project managers are not acquainted with the more traditional denotational
or axiomatic approaches. The power of this Pr-T Net approach is really something that
should be highlighted. To me this was best exemplified by a statement from a young

• attendee, new to the area of formal verification: "now this is something I am able to
understand!" This statement should remind us all that understandability must be the
watchword of the verification community!

Dr. K. C. Tai
4- North Carolina State University

"An Empirical Study of Testing Concurrent Ada Programs"

Dr. Tai presented a paper concerned with a testing method for tasking in Ada. He
pointed out that testing concurrent programs written in Ada is particularly difficult due to
the non-reproducible/non-deterministic behavior of such programs. In his testing method,

* Dr. Tai uses the deterministic execution approach to reproduce rendezvous sequences and
to determine whether the rendezvous sequences are feasible. Presently, the work considers
only single-processor systems.

5 5

0

Mr. Scott Hansohn 0

Honeywell Secure Computing Technology Center
"Trusting Compilers -- A Pragmatic View"

Mr. Hansohn presented a paper discussing the problem of compiler
trustworthiness. The main thrust behind Mr. Hansohn presentation was that by relying •
upon tools for the development of software, the trustworthiness of the software is subject
to many risks. I nese risks range from malicious or incompetent tool writers to inherently
incomplete descriptions or specifications. Mr. Hansohn also pointed out that it is
impossible to guarantee the "correctness" of every level of the system, especially the
compiler level. Some trade-offs must be made between programmer productivity and
software trustworthiness. 0

Dr. Roger Jones
ICL Defence Systems
"Logical Foundations and Formal Verification" 0

Dr. Jones presented a paper discussing an approach to formal sementics based on
pure combinatorial logic. In the discussion which followed the presentation, it appeared
that the work is far from finished and its effectiveness is -till open to question.

The Draft of the European Formal Definition of
Ada
Dr. Egidio Astesiano
University of Genoa

Mr. Jan Pedersen
Dansk Datamatik Corporation
"An Introduction to the Draft Formal Definition of Ada"

Mr. Pedersen described the current European approach to a formal definition of
Ada, though this method is not restricted to Ada. The definition is a hybrid of denotational
and algebraic semantics and is supplemented by an English language narrative as a further
explanation. The definition is keyed and cross-referenced to the Ada Language Reference
Manual (LRM), ANSI/MIL-STD 1815A, to permit direct comparison with the official, but
informal, definition. Finally, the definition is based on the SMoLCS (Structured
Monitored Linear Concurrent Systems) methodology, an approach to the specification of
concurrent systems.

Mr. Pedersen focused on the static semantics portion of the formal definition. Dr.
Astesiano focused on the dynamic semantic portion of the formal definition. Additionally,
Dr. Astesiano discussed the relationship between the European formal definition of Ada
and specifications used in the formal verification of program text. There was a tremendous
amount of material to be presented regarding the formal definition, and the best that could

6 0

be expected was a quick, detailed run through. In retrospect, a tutorial by one of the
external reviewers of the work would have been a useful preliminary.

At the conclusion of the presentation, Dr. Platek thought it might be helpful to give
some historical remarks concerning the European effort to construct a formal semantics for
Ada. About four years ago, people familiar with the real problems in developing a formal
semantics began to study the NYU and CEC definitions instead of the Ada LRM; hence,
the current European effort to formulate a formal definition. Dr. Platek and Dr. Luckham
are on a review committee accessing and evaluating the European formal definition of Ada.
The committee is currently concerned with such questions as:

1) Does the formal definition create a language different from the one defined by

the Ada LRM?

2) What are the potential uses of the formal definition?

3) How can the formal definition be verified?

The full definition is due January 1, 1987, and it will be reviewed until June 1987, at
which time it may be adopted as an ISO standard.

Concluding Remarks
A common theme, not established at the outset of the workshop, did emerge. This

theme was "Multi-Paradigms", indicating that there is room for, and indeed a need for, a
multitude of paradigms for practical verification of Ada programs. A substantial number of
the papers presented at the workshop addressed various verification techniques targeting
different mechanisms within the language. Papers were presented on the following:
specifying concurrent programs, based on Predicate-Transition networks; verifying loop
control structures, based on Hoare triples; and verifying exception handlers, based on
axiomatics. An outline of a method for generating verification conditions from attribute
grammars was also presented. Although these methods are diverse, their applied purpose
was singular: the verification of Ada program text.

The problem with all of these varied approaches is that in each case, the researcher
had to "go back to the well" of the LRM to justify the semantics used. To achieve
consistency across approaches, it would be a reasonable goal for the verification
community to urge the adoption of a formal definition as final arbiter for questions of
language meaning. This, of course, implies the establishment and support of a
maintanance capability for the formal definition. This capability should be integrated with,
or at least commensurate with, the maintainance capability of the Ada language itself. Even
if such a definition is not suitable for direct use in automated verification systems, it would
provide a better basis for resolving issues concerning the soundness of interpretations of
language semantics and verification implementations.

What appears to be the next needed step, therefore, is to leverage the work done on
the EEC Formal Definition of Ada to the verification tool and environment work that has
been done previously here in the U.S.A. Specific projects should be proposed, along with
project milestones and funding profiles, which can be coordinated as an overall program.
While there is yet no money readily available, it is important that the definition of what

* might be included in such a program should be developed so that appropriate funding can
be sought.

7

To date, the security community has been the major sponsor of research and
development of the verification technology. However, it should not be expected that the
security community will continue to be the primary or sole supporter of all future research
in this area. Sponsorship within the Ada community is diverse and many sponsors, other
than the security community, have both an interest in and a need for Ada verification
technology. As it increases in complexity, mission-critical software is a particular area
where such technology could provide significant benefits. To assist in obtaining this
funding, papers need to be written targeting managers and touting the advantages and
potentials of the formal definition work and the technologies that should develop around it
to support the needs of these sponsor's programs. Success stories should be provided to
amplify the advantages and potentials of developing verified software. Unless other
members of the Ada community are convinced to support these activities, there is a real
danger that the lack of funding for new or sustained research efforts will continue.

8

THIRD IDA WORKSHOP ON ADA®

SPECIFICATION AND VERIFICATION
Research Triangle Park, NC - May 14-16, 1986

Human Verification in Ada

Harlan D. Mills

IBM'3Corporation

Objectives

It is an honor to be with you today. I regard the
verification community as a critical national resource in
software engineering. For too many people, even in the universi-
ties, software engineering is more a buzzword than a bonafide
engineering discipline. The rigor of verification is a key
discriminator between buzzword and engineering discipline in
software. So it is an opportunity, indeed, for me to speak with
you.

I have two objectives today. First, I would like to
encourage you to transfer your verification knowledge and
technology to people as well as to machines. People are more
fallible than machines in the verification process, but they are
more flexible, too. I would like to convince you that people are
worth the effort. Second, I would like to see human verification

* supported in Ada environments, in particular by the inclusion of
verification language and processing facilities to complement and
complete such facilities for programs and specifications.

In support of these objectives, I would like to discuss our
experience in IBM with the so-called Cleanroom method of software

* development, in which human verification is used to replace
program debugging before release to independent testing. We are
finding that human verification is surprisingly synergistic with
statistical testing -- that mathematical fallibility is very
different than debugging fallibility, and that errors of mathe-
matical fallibility are much easier to discover in system testing

* than are errors of debugging fallibility.

I would also like to describe the method of human
verification used in IBM, called functional verification, that is
somewhat different than axiomatic verification or predicate
transformers usually taught in universities. It is based on a

* denotational semantics and the reduction of verification to
ordinary mathematical reasoning about sets and functions as
directly as possible. While harder to teach than axiomatic
verification, we find that functional verification scales up for
reasoning about million line systems in top level design as well
as about hundred line programs at the bottom.

• Oda is a registered trademark of the U.S. Government
C M is a registered trademark of the International Business

Machines Corporation

- 2 - 0

Finally, I would like to encourage you to expand your
efforts in automatic verification. We are in need of
breakthroughs there, possibly in the very fundamentals of how we
frame the problems and processes.

Who Drives Verification

In the Ada paper, "The Status Of Verification Technology For
The Ada Language" by Nyberg, Hook, and Kramer, it is stated that
"...verification technology has been driven more by the security
community than any other community" [10, p.31 In contrast, in
IBM, the human verification methodology has been driven by the
management community [8]. This management concern has led to the
IBM Software Engineering Institute (SEI), an internal teaching
institution with a faculty of some 50 worldwide, whose curriculum
is centered on the systematic design and functional verification
of both programs and modules [6). The driving force in setting
up the IBM SEI was a management conviction that verification
methodology is an especially potent force for effective
intellectual and management control of software development. The
SEI courses are pass/fail, to be required eventually of all
software personnel in IBM.

Verification education is a potent management tool because
it literally induces behavior modification in industrial program-
mers in design and communication activities, whether or not
formally practiced program by program. For example, mathematical
verification requires formdal specifications to improve
communications, repeatable reasoning about why programs meet
their specifications, and places a premium on clear, simple
designs rather than clever, baroque ones. In fact, programs that
are difficult to verify, even informally, are automatic
candidates for redesign.

Cleanroom Software Development

While it may sound revolutionary at first glance, the
Cleanroom method is an evolutionary step in IBM software
development. Very briefly, program testing and debugging is
prohibited before software is released for independent system
testing. Then the system is tested with user representative,
statistically generated, inputs. It is evolutionary in
eliminating debugging because over the past twenty years more and
more program design has been developed in design languages that
is verified rather than executed, so that the relative effort in
debugging in advanced IBM groups, compared to verifying, is now
quite small, even in non-Cleanroom development. It is
evolutionary in statistical testing because user representative
testing is correspondingly a greater and greater fraction of the
total testing effort. And, as already noted, we have found a
surprising synergism between human verification and statistical
testing. People are fallible with human verification, but the
errors they leave behind for system testing are much easier to
find and fix than those left behind from debugging.

10

-3-

The feasibility of combining human verification with
statistical testing makes it possible to define a new software
development process with bonafide statistical quality control
[3]. For that purpose, we define a development life cycle of
several incremental releases to a so-called structured
specification of function and (statistical) usage. A structured
specification is a formal specification (a relation, i.e., set of
ordered pairs) with a decomposition into a nested set of subsets,
to provide a subspecification for each release that includes that
of all previous releases. That is, a structured specification
defines not only the final software, but also a release plan for
its incremental implementation and statistical testing. As each
release becomes available, statistical testing provides
statistical estimates of its reliability (e.g., in MTTF), and
software process analysis and feedback can be used to meet
prescribed reliability objectives (e.g., by increased
verification inspections, more specification formality, etc.) for
subsequent releases. As errors are found and fixed during system
testing, the growth in reliability of the maturing system can be
estimated as well, so that at final release, a certified
reliability estimate of the system tested software can be
provided.

Our Cleanroom experience to date includes three projects, an
IBM language product (35 KLOC), an Air Force contract helicopter
flight program (35 KLOC), and a NASA contract space transport
planning system (45 KLOC). The major finding in these projects
is *hat verification and inspections can replace debugging, even
though fallible. That is, even informal human verification can
produce software sufficiently robust to go to system test without
debugging. Typical increments are 5-15K lines of software; with
experience and confidence such increments can be expected to
increase in size significantly. All three projects showed
productivity equal to or better than expected for ordinary
software development. That is, human verification takes no more
time than debugging (although it takes place earlier in the
cycle).

The verification process in these projects is very informal,
with almost no automatic support beyond word processing, used
mostly for decomposing relatively formal specifications during
stepwise refinement. Yet, significant systems have
been brought up, tested, and delivered on the strength of human
verification alone. So just imagine how automatic verification
support could amplify these human abilities!

Functional Verification of Software

Human verification in IBM is based on a denotational
semantics for structured programs based on set theory (rather

*than lattice theory). This denotational semantics defines an
algebra of functions (meanings) of program parts, with
composition and union operators (for sequence and selection).

11

-4- 0

Iteration is defined by recursion, so composition and (disjoint)
union are the only operators needed in the algebra of functions;
of course, termination questions arise in iteration and are
treated explicitly.

The paradigm for functional verification is somewhat
different than for axiomatic verification or predicate
transforms. It is to compute the meaning of a program or part
(i.e., evaluate an expression in the algebra of functions), using
the meanings of its parts, then to compare that meaning with the
meaning of the specification. In the case of iteration, this
paradigm can be converted into a termination question and the
verification that a certain recursive function equation is
satisfied by the specification. In particular, no loop invariant
is needed for this verification. (See [6, p280] for the relation
between iteration specifications and loop invariants).

The time to verify software is during stepwise refinement of
a design. Every sequence, selection, and iteration verification
requires specifications for their constituent parts, so stepwise
refinement involves a lot of specification decompositions into
subspecifications, altogether much more specification writing
than program writing.

The motivation for functional verification, and earliest
possible reduction of verification reasoning to sets, functions,
and relations, is the problem of scaling up. A set, function, or
relation can be described in three lines of ordinary mathematics
notation or three hundred lines of English text. There is more
human fallibility in three hundred lines of English than three
lines of mathematical notation, but the verification paradigm is
the same. By introducing verification in terms of sets, func-
tions and relations of abstract states, with neither programming
nor mathematical variables, we establish a basis for reasoning
that scales up. Large programs have many variables, but only one
meaning function.

Eventually these abstract states are represented in terms of
programming variables, but those are convenient details of design
rather than necessities of verification. So verification reason-
ing can (and does) take place at high levels of design, in
connecting specifications with subspecifications before program-
ming variables are invented.

For human verification we find pre- and post-conditions hard
to scale up, for two reasons. First, two parts of a single
specification become separated by considerable text as the design
expands. It seems more convenient to give the specificat-ion in
one place. Second, the post-conditions require state (or state
part) replication to describe correspondences between initial and
final states. These are not theoretical difficulties, or even
pedagogical difficulties for small programs, of course.

12

-5-

Ada Suggestions

I have a direct suggestion for Ada environments -- include
verification language and processing facilities to implement and
complete such facilities for programs and specification. As
de Bruijn [1], Martin-Lof [71 and Constable [2] have shown, we
can represent natural deduction in a modern programming/
specification language by adding propositions as types whose
members are proofs of their propositions. Today's interactive
verification facilities provide valuable experience in the human
factors and use of such facilities. My suggestion is to bring
verification writing into Ada environments as a full partner with
program and specification writing.

Although possibly surprising to rank and file programmers, I
believe the formal source in an Ada environment will see program
text as a distinct minority, with at least three to five times as
much specification text as program text, and with at least three
to five times as much verification text as specification
text. The stepwise refinement process generates much more
intermediate specification text than initial specification text.
But there is another reason why specification text should be more
voluminous than program text. By its very use, program text can
take advantage of iterations and sequential process, and thereby
can be miniaturized in ways not available for specification --
people do not have to understand program text in the sense that
they understand specification text, namely to provide an
independent opinion of its relevance in its problem domain. They
only need to understand that program text be correct with respect
to the specification. So, except for toy problems, or extremely
well understood problem domains, where abbreviations are easily
recognized (e.g., mathematics), specification text will be longer
than program text.

While program and specification text have identical meaning
domains, verification text finds its meaning in whether its
proposition types are empty or not. The main proposition types
of interest are those that claim that a program is correct for a
specification. But to exhibit a member of such a type
constructively requires the equivalent of a constructive
mathematical proof of the proposition. We know from experience
that proofs of correctness are larger than their programs and
specifications, even quite informal proofs. I would expect
verification text to contain human proof designs for human
inspection and judgement, rather than full proofs. Even so,
human developed full proofs could be eventually proof checked,
e.g. as in NUPRL [2), or Automath [11, in ADA environments.

I also believe new breakthroughs in automatic verification
theory are possible. Fxperimental systems such as Gypsy (5] and

* AFFIRM [4] have provided valuable experience in the automation of
verification based on the first order predicate calculus with
axiomatic verification. It would be interesting to discover a
complexity theory for verification that could explain this

* -13

-6-

experience, and shed light on performance issues across a broader
set of alternative bases for verification. For example, de Bruijn
in Automath begins with a typed lambda calculus, in which natural
numbers and predicate calculus must be explicitly axiomatized, if
required. While this seems a primitive base with extremely
little built-in logical machinery, Automath has been used to
proof check an entire mathematics text (Landau's Grundlagen der
Analysis) in a relatively small, slow computer. There seems to
be something to understand in that achievement. Constable, in
NUPRL [21, begins on a base intermediate between the typed lambda
calculus and the predicate calculus, with built-in natural
numbers and lists of natural numbers, so performance in NUPRL
should give an additional data point for a complexity theory of
verification.

References

1. de Bruijn, N. G. A survey of the project Automath, in
Essays in Combinatoric Logic, Lambda Calculus,
and Formalism, J. P. Seldin and J. R. Hindley, eds.
Academic Press (1980) pp 589-606.

2. Constable, R. L. et al. Implementing Mathematics with the
NUPRL Proof Development System, Prentice-Hall (1986).

3. Currit, A., M. Dyer, and H. D. Mills. Certifying the
Reliability of Software, IEEE Transactions on
Software Engineering, SE-12, 1, (January 1986) pp 3-11.

4. Gerhart, S. L. Fundamental Concepts of Program
Verification. AFFIRM Memo-15-SLG, USC ISI (1980).

5. Good, D. I., et al. Report on the Language Gypsy, Version
2.0 TR ICSCA-CMP-10, inst. for Computing Science, 0
U. of Texas, Austin (1978).

6. Linger, R. C., H. D. Mills and B. I. Witt. Structured
Programming: Theory and Practice, Addison-Wesley
(1979).

7. Martin-Lof, P. Constructive Mathematics and Computer
Programming. In Sixth International Congress for
Logic, Methodology, and Philosophy of Science,
North Holland (1982) pp 153-175.

8. Mills, H. D. et al. The Management of Software Engineering,
IBM Systems Journal, 15, 4 (1980).

9. Mills, H. D. and R. C. Linger. Data Structured Programming,
IEEE Transactions on Software Engineering, SE-12, 2
(February 1986).

10. Nyberg, K. A., A. A. Hook and J. F. Kramer. The Status of
Verification Technology For The Ada Language, P-1859
IDA (1985).

14

3RD IDA WORKSHOP ON ADA

SPECIFICATION AND VERIFICATION

RESEARCH TRIANGLE PARK, NC

MAY 14-16, 1986

HUMAN AND MACHINE ADA VERIFICATION

0

0

0

HARLAN D. MILLS

IBM CORPORATION

0 BETHESDA, MD

* 15

AGENDA

OBJECTIVES

TRAN*SFER VERIFICATION TECHNOLOGY TO PEOPLE

REALIZE VERIFICATION BENEFITS IN' ADA ENVIRONMENTS

CLEANROOM EXPERIENCE

PROGRAMMING WITHOUT DEBUGGING SURPRISINGLY EPSY 0

MATHEMATICAL FALLIBILITIES AND DEBUGGING FALLIBILITIES

FUNCTIONAL VERIFICATION

SIMPLIFIED DENOTATIONAL SEMANTICS

REDUCTION TO ORDINARY MATHEMATICAL PROCESS

ADA SUGGESTIONS

ADA VERIFICATION LANGUAGE

BRING IN STATISTICAL TESTING

EXPAND AUTOMATIC VERIFICATION EFFOPTS

16 0

NYBERG, HOOK, KRAMER IDA P-1879

",-VERIFICATION TECHNOLOGY HAS BEEN DRIVEN MOPE

BY THE SECURITY COMMUNITY THAN ANY OTHER C0MM'lUNJTY,"

IN IBM

VERIFICATION METHODOLOGY DRIVEN BY THE MANAGEMENT

COMMUNITY,

IBM SOFTWAPE ENGINEERING INSTITUTE CURRICULUM IS BASED Gcr

MATHEMATICAL (FUNCTIONAL) VERIFICATION OF BOTH PPOGPAMS AND

MODULES (DATA ABSTPACTIONS),

17

0

CLEANROOM SOFTWARE DEVELOPMENT

SOFTWARE DEVELOPMENT UNDER STATISTICAL QUALITY CONTROL

STRUCTURED SPECIFICATIONS OF FUNCTION AND USAGE 0

CERTIFIED RELIABILITY STATISTICS AT DELIVERY

PROCESS FEEDBACK TO MEET RELIABILITY OBJECTIVES

STATISTICAL TESTING OF INCREMENTAL RELEASES

PROGRAM VERIFICATION, NOT DEBUGGING, BEFORE RELEASE

VERIFICATION INSPECTION, NOT PROGRAM INSPECTION

PROJECT EXPERIENCE

IBM LANGUAGE PRODUCT 35K

HELIOCOPTER FLIGHT PROGRAM 35K S

SPACE TRANSPORT PLANNING 45K

PRELIMINARY FINDINGS

MATHEMATICAL FALLIBILITY PRESENT BUT TRACTABLE

MATHEMATICAL ERRORS ARE PROGRAMMING PLUNDERS

SYNERGISM OF MATHEMATICAL VERIFICATION AND

STATISTICAL TESTING

HIGH PROGRAMMER MORALE AND ACCEPTANCE

100

FUNCTIONAL VERIFICATION OF SOFTWARE

SIMPLIFIED DENOTATIONAL SEMANTICS

OPERATIONAL SEMANTICS IS WORM'S EYE VIEW!

DENOTATIONAL SEMANTICS IS BIRD'S EYE VIEW

CAN BASE ON SET THEORY RATHER THAN LATTICE THEOPY

VERIFICATION PARADIGM

COMPUTE MEANING OF PROGRAM

USE MEANINGS OF PARTS IN COMPUTATION

COMPARE WITH MEANING OF SPECIFICATION

VERIFICATION WITH STEPWISE REFINEMENT

VERIFY EVERY SEQUENCE, SELECTION, ITERATION TOP DOWN

CONVERT ITERATION INTO RECURSION AND TERMINATION

WITH FUNCTION SPECIFICATION NO INVARIANT NEEDED

NEEDS A LOT OF SPECIFICATION REWRITING!

VERIFICATION BY PEOPLE

VARIABLE FREE THEORY NECESSARY FOR SCALE UP

PRE AND POST CONDITIONS CONSIDERED HARMFUL

DESIGN/PPOOF DISCIPLINE CRITICAL

*19

ADA SUGGESTIONS

ADA VERIFICATION LANGUAGE

ADD PROPOSITIONS AS TYPES S

DEFINE ADA VERIFICATION SEMANTICS

ADA ENVIRONMENT FORMAL SOURCE SIZES

PROGRAF 5%

SPECIFICATION 25%

VERIFICATION 70%

BRING IN STATISTICAL TESTING

ADD USAGE STATISTICS TO SPECIFICATIONS

ADD STATISTICAL INFERENCE TO TEST ANALYSIS S

EXPAND AUTOMATIC VERIFICATION EFFORTS S

TOP DOWN NATURAL DEDUCTION

VERIFICATION COMPLEXITY THEORY

PEOPLE - MACHINE SYNERGISMS

2n 0

0

APPLYING SEMANTIC DESCRIPTION TECHNIQUES

TO THE CAIS

by

0

Timothy E. Lindquist

Arizona State University

* Tempe, Arizona 85287

Lindquis%asu@csnet-relay

(602) 965-2783

0 Roy S. Freedman

Polytechnic University

Bernard Abrams

0 Grumman Aircraft Systems

Larry Yelowitz

Ford Aerospace

0

April 15, 1986

21

0

ABSTRACT 0

Throughout the development of the CAIS, which is an operating system interface to be
hosted on several systems, semantics have been an issue. Aside from the benefit to designers,
having a formal description of the interface is important to various aspects of its use. The current
effort to create a government standard of CAIS would certainly benefit from a formal definition.
Increasing the transportability of Ada* software built on CAIS is one of its design goals. To assure
a reasonable level of transportability will require a validation suite that may be applied to
implementations. Although the need for validation has typically not extended beyond a single
vendor, we now see its potential for savings in software development. Constructing proofs of
tools or applications that use kernel facilities additionally motivates a formal description, and finally
as we've seen in programming languages, formal descriptions can direct implementations. In this
paper, various methods of description are analyzed regarding their applicability to kernel interfaces.
The methods treated include English narrative, abstract machines, axiomatics, and denotational
descriptions. For each method, we show an example from CAIS and analyze the methods

applicability to various features.

Keywords. Kernel interfaces, operating systems, verification, axiomatic and denotational

semantics.

*Ada is a registered trademark of the U.S. Government Ada Joint Program Office.

Applying Semantic Description Techniques to Kernel Facilities

22

0

0 1. INTRODUCTION

This paper describes and evaluates alternative methods of specifing the semantics of kernel

level facilites. Both formal semantic methods and informal methods are examined. The authors
have been involved with an effort to develop a common set of services to support APSE (Ada

*Programming Support Environment) tools. The methods we describe are exemplified using this

common set, called CAIS (Common APSE Interface Set, pronounced as case). CAIS is an
operating system interface that supports software development tools.

If CAIS is implemented consistently on a variety of host systems then the effort needed to
* transport tools will be reduced. In the same manner as for the Ada Language, a validation

capability is being developed for the CAIS [E&V 85]. Validation must address the consistency and
completeness of CAIS implementations with respect to the specification. In doing preliminary

work on developing validation tests, we found the need for a precise specification of the system.

* Various specification methods have been examined for their applicability to CAIS features. In this
paper, we present and compare the applicability of each method.

Although the problem of describing kernel facilities has not received adequate treatement, the

benefit of formal description is clear. Any effort to standardize on a low level interface, such
* graphics or process management, needs a precise specification to be complete enough and

unambiguous. As standards arise, we are seeing the development of validation mechanisms to
assure consistency among implementations, as mentioned above with CAIS. It has also become
clear that formal specifications can be used to direct implementation efforts. Technology is

0 advancing to the point where directed implementations are as efficient as ad hoc implementations.

2. CATS: A COMMON OPERATING SYSTEM INTERFACE

The Department of Defense has developed and standardized on the programming language
0 Ada. When development environment tools are considered, however, a single language is only

part of what is needed for transportability. Tools access environment data and control processes

through operating system services. The combination of a standard language and a standard

operating system would increase tool transportability.
* CAIS defines a common interface to the operating system. The interface is a set of Ada

packages containing procedures and data definitions that are used by Ada programs to request
system services. If the format of the call for services (syntax) is standard and the response to the
call (semantics) is the same, then the effect of a standard operating system has been achieved.

CAIS has been designed by a working group of the KIT/KITIA (Kernel APSE Interface

Applying Semantic Description Techniques to Kernel Facilities

* 23

Team/Industry and Academic) under sponsorship of the Ad Joint Program Office through Naval

Ocean Systems Center [KIT-82]. A Government Standard CAIS specification [CAIS-85] is
currently being reviewed, and an effort is underway to address incorporating capabilities deferred
from the initial design, such as distributed environments. Several prototypes and implementations

are currently being developed.

3. SPECIFYING KERNEL FACILITIES

3.1 Syntax and Semantics

A typical CAIS facility is the OPEN procedure, whose format is shown in Figure 1. The
procedure specification gives the procedure name, the parameters and their types. This format is the
syntax and is expressed through Ada package specifications. The CAIS document augments the
syntax with Engl:h narrative describing the call. The actions performed by OPEN are its

semantics.

procedure OPEN(NODE: in out NODETYPE;
NAME: in NAMESTRING;
INTENT: in INTENTION:= (1 => READ);
TIMELIMIT: in DURATION:= NODELAY);

Figure 1. The OPEN facility's syntax.

Ada provides a well understood notation that completely and unambiguously defines syntax.

Ada semantics are conveyed in English text and the Language Reference Manual states that
meanings are as defined in Webster's Dictionary. Text benefits from the power and suffers from 0
the ambiguities of a natural language specification. The English description is adequate for most

purposes but is often incomplete and ambiguous.
One example is the OPEN statement of Figure 1. Its function is to create an association

between an Ada program variable and a CAIS environment node. The internal variable, called a 0
node handle, is used by the program to reference the node in operations. One parameter to OPEN

is an array, called INTENT, that conveys intended accessto the node being opened. Typical values

of Intent are Read, Write, and ExclusiveRead. As an example of incompleteness, the explanation

of OPEN does not indicate behavior if the Intent array contains overlaping or contradicting intents. •
What if both Read and ExclusiveRead are requested?

Natural language specifications contain implied assumptions about their context. An implied

assumption of the open statement may be that a user doesn't care which one of a contradicting
intents is chosen. Such a specification may be precise enough for a user but not for validating,

Applying Semantic Description Techniques to Kernel Facilities

24

implementing, or arguing formally about programs using CAIS. Semantics of CAIS are mostly
well defined, however, one can anticipate uses requiring a more thorough and formal description.

3.3 Methods of Supplementing a Semantic Definition

The semantics of CAIS is specified in MIL-STD-CAIS by English narrative, with some
additional semantics implied by the Ada package specifications. The methods we present for
supplementing CAIS semantics can be grouped into formal and informal methods. The formal
methods are mathematical in nature and include axiomatic, denotational, and abstract machine

notations. The informal methods are additional narrative and examples.

4. INFORMAL SEMANTIC SPECIFICATION
The informal methods of supplementing semantics, English narrative and examples, have

strengths and weaknesses. English or other natural language narratives can be verbose,
ambiguous, and context dependent. The interpretation of an English sentence depends on the

background of the reader. Further, English words have many meanings. My dictionary lists 12 for
"be", 33 for "beat", and 15 for "bend". There is, however, no match for the understandability and

generality of English. Even texts in theoretical mathematics use more English than mathematical
notations to communicate.

Description by examples is done through small programs or parts of programs using CAIS.
Test cases from a CAIS test suite would make good examples since these are small programs
exercising one CAIS feature. Examples are not general and not concise but are very

understandable. When there is a choice of methods of specifing semantics the most precise,
concise, and abstract method should be used. Formal mathetical methods , when they are

applicable, usually meet these criteria. But there are still many cases where informal methods are
needed. The informal methods are supplements and not replacements for formal methods
Examples of the use of informal methods to supplement CAIS semantics follow.

4.1 OPEN Facility
OPEN, as discussed above, establishes a connection between an external file and an internal

node handle. Objects in CAIS are managed using a node model. A node can be a file node, a
structure (directory) node, or a process node. Figure 2 is an example of the use of OPEN. It is a
test case showing how an internal program variable called a node handle is connected to an external

node by OPEN. The handle is then used to access the node. The example shows semantics in the
sense that it shows how the OPEN procedure is used.

Applying Semantic Description Techniques to Kernel Facilities

25

Examples may not show what happens in any of the exceptional cases. Supplementary
English narrative can be added showing what happens if, for example, incompatible Intents are S
presented to the procedure. The Intent array argument to OPEN could be:

(READ, WRITE, CONTROL)

There is nothing to stop a user from specifing an incompatible set of intents. If both
WRITE and EXCLUSIVEWRITE are specified there is a conflict. The first Intent lets many users

write simultaneously and the second permits only one at a time. This uncertainty can be resolved by
additional narrative in the specification such as:

1. In the event of conflict use the most restrictive interpretation; thus,

EXCLUSIVEWRITE has precedence over WRITE, or
2. In the event of conflict reject the call with an exception or

3. Any conflict resolution scheme is acceptable.

Any one of the above clarifications is sufficient from the viewpoint of creating validation
tests. Which one is chosen is a design issue, however, without specifying one option, the validator

is forced to make the design decision.

S

Applying Semantic Description Techniques to Kernel Facilities

26 0

-- CA[S TEST OF OPEN
-Open by Name -- good data - take defaults

-- Open the node and verify with an inquiry
.. Precondition -- Initial State 1

with NodeManagement, use Nade_Management;
with NodeDefinitions; use NodeDefinitions;
with TextlO; use TextlO;
procedure Open1 is

Nodel: Node_Type;
Name: NameString;

begin
------- OPEN THE NODE

Name := "'DOT(F1)";
Open(Nodel, Name)
PutLine ("Open has been called");

------- Verify with an inquiry -------
if IsOpen(Nodel) then

PutLine ("Open Verified");
else

PutLine ("Open Failed");
end if;

........ END OF TEST -..---
end Open1;

Figure 2 Example of Open Procedure

4.2 The CAIS Node Model

Nodes, node handles, and path names are part of the node model. CAIS manages files,

* directories, devices, and processes by representing them as nodes in a network. Nodes are related

to each other by relationships. Relationships are uniquely specified by a relation name and a

relationship key, and a relationship may be either primary or secondary. Primary relationships are

constrained to maintain a hierarchical structure of nodes. A typical network is shown in Figure 3.

Applying Semantic Description Techniques to Kernel Facilities

* 27

'CurrentNode

S 'Child(Sam)

Figure 3. The Node Model.

An object, such as a file, is found by following the path of relationships from a known node

to an object node. A path is specified by a path name made by concatenating all the element names

along the path.

Another CAIS function is PRIMARYNAME. The input to the function is a node handle,

and the function returns the name of the primary path to the node. The Priminary Name function

returns the path name. For example the path from node Joe to node Sam is:

'CurrentNode'Child(Sam). Since CurrentNode is the default relation, the path can also be

expressed as: 'Child(Sam). Child is the name of a relation. Sam is a particular instance of the

relation. Since Sam is the only instance, the relation key "Sam" can be omitted and the path

expressed as: 'Child. The relationship 'DOT(A) uses the default relation name (DOT) that can be

expressed in two ways, Dot or (.). Two of many ways of expressing the path between the current

node and "A" are:

'Child(Sam)'Dot(A) or 'Child(Sam).A

It is clear that the semantics of PRIMARYNAME are ambiguous. There are many different

strings that could be returned by the function. If the intended meaning of the designers was that any

valid name string is acceptable, this could be stated in one sentence. However, allowing any string

to be returned may promote implementations that hinder transportability. One way to supplement

the semantics is with the following paragraph:

The full path name up to the CurrentNode shall be returned. Relationship
keys shall be spelled out even when they are unique. The dot relation shall be in the
long form.

Applying Semantic Description Techniques to Kernel Facilities

20

An example of a correct name using the network of Figure 3 is:

'Child(Sam)'Dot(A)

4.3 ANALYSIS OF INFORMAL METHODS

The primary strengths of Narrative and examples deal with the ease with which they may be

created comprehended. These advantages clearly outweigh any disadvantages during the initial

design of the interface. A large portion of CAIS can be specified in a short description. The short

description provides a quick introduction, to which details may be added. Ambiguity in the CAIS

specification can be corrected by a combination of narrative and/or examples without requiring a

formal description. The primary disadvantage is the difficulty in obtaining completeness in

narrative specifications. Narratives cannot be used for formal arguments of correctness or

arguments of interface characteristics. Descriptions using these techniques can best be viewed as a

step in the process of developing more complete and formal descriptions. The most useful form of

narrative is one that is developed in conjunction with or based on a formal description. Doing so

reduces the tendency toward incompleteness or ambiguity.

5. ABSTRACT MACHINE DESCRIPTION

A report from a preliminary study of validation in an APSE IKAF-82] indicates that

specifying the semantics of an interface such as CAIS requires more than a description of the

syntax and functionality of its routines. Interactions that exist at the interface must be specified.

Interactions may include routines that operate on a common data structure, routines that rely on data

* produced by a tool or routines depending on the Ada runtime environment. Furthermore, any

pragmatic limits which apply to implementations must also be specified. These might include the

length of identifier strings, field sizes, maximum number of processes, or the maximum number of

times that an interface routine may be called.

* Lindquist [LIN-84], describes an Ada-based Abstract Machine approach to describing CAIS.

Using this approach functionality is operationally described in the form of Abstract Machine

Programs. The programs are written in Ada. One is written for each CAIS routine to describe

what that routine does. If there existed an executor for the programs (the Abstract Machine) then an

* operational definition of CAIS would exist. In later papers, [LIN-85a, SRI-85], the technique is

demonstrated using the CAIS process model and applied to the problem of generating a validation

mechanism for CAIS implementations. As depicted in Figure 4, an Abstract Machine consists of

three components:

Applying S,-mantic Description Techniques to Kernel Facilities

* 29

1. A processor,
2. A storage facility, and
3. An instruction set.

The processor is able to recognize and execute instructions from a predefined set. Each

instruction has an action that the processor carries out in some data context. One component of the

processor, called the environment pointer, indicates the data context in which an instruction is to be 0

executed. Another component, called the instruction pointer, sequences processor execution

through the instructions of the program.

The storage of the processor is memory for both data and programs. Data storage constitutes

the environment used by the processor to execute instructions. The final component is the

instruction set.

Abstract Machine 4Node Iu Atc hi
Programs Management areut ti ptis

inscn instruction

i Ada Statements fI Ada

P r im itiv e p o n e P r im itiv e

Statements
Objects

Figure 4. CAIS Abstract Machine.

Instructions are taken from the Ada language and are augmented needed primitive operations.

The meanings of these primitive operations are left to the description of the Abstract Machine.

Additional operations can be viewed as extending the instruction set of the Abstract Machine to 0

include operations beyond the scope of Ada.

5.1 Ada Abstract Machines to Describe CAIS

Although other Abstract Machines could be used, this section presents one that is Ada-based. 0

Applying Semantic Description Techniques to Kernel Facilities

3'

Several aspects of Ada make it a desirable choice for this description. One is the richness of the

Ada control constructs and typing facilities. The most compelling reason for using Ada is

compatibility with the uses of the CAIS specification. CAIS implementors and users are familiar

with Ada, thus making an Ada-based Abstract Machine more comprehensible and useful. Although

we ultimately desire a formal semantic description, the Ada-based Abstract Machine provides an

0 excellent intermediate between Narrative and a formal description. The Ada-based Abstract

Machine is easier to construct than a formal description and is more complete than Narrative.

Although Ada has not been totally specified using a formal technique, the language's controlled

definition provides an adequate basis for the Abstract Machine.

5.1.1 Node Management and List Utilities.

CAIS defines a set of list manipulation facilities that may be used in conjunction with the

CAIS. Lists may be either named or unnamed. Named lists are those in which each element in the

0 list has a unique name. The package includes routines for constructing generalized lists containing

string, interger, list, and floating point elements. Routines to add, remove, and examine elements

of a list are provided. An Ada-based Abstract Machine description of List Utiulities follows the

same approach as an Ada implementation. Figure 5 demonstratres the linking structure our

definition uses for the example named list:

(APPLE => "GREEN", GRAPE => (RED => "SEEDLESS"))

List manipulation routines are constructed in Ada using this representation. A criticism of

Abstract Machine descriptions is that the code itself specifies an implementation technique.

Independent of the machinery selected, instructions to carry-out an operation must indicate an

implementation technique. The meanings of the routines are not, however, derived from the code,

* but instead by the effect of executing the code on the Abstract Machine.

Applying Semantic Description Techniques to Kernel Facilities

* 31

n am ed 2AP
L

PL GRAPE

"GREEN"V I o

-SEEDLESS-

Figure 5. A sample list implementation. 9

The CAIS Node Management package includes facilities for manipulating nodes, which

represent entities of the CAIS environment. Nodes may exist for processes, files, devices, queues,

and node structures. Nodes may be related to one another using either restricted or unrestricted

relationships. The restricted form of relationships, called primary relationships, require that each

node have exactly one parent (except a single root node). The unrestricted form allows more

general (cyclic) relationships to exist among nodes. CAIS Node Management provides routines for

manipulating nodes, relationships among nodes, and attributes (either node or relationship

attributes). Node Management also includes access mechanisms, which control the operations that

a process may perform on a node.

The Abstract Machine description of Node Management relies heavily on data mechanisms of

Ada. Included in the description are substantial uses of dynamic structures to represent nodes, to

Applying Semantic Description Techniques to Kernel Facilities

332

store relationships between nodes, and to store lists and attributes. Access types, constrained
record types and exception handling mechanisms are all used in the description.

Exception handling facilities are used throughout the CAIS to return status information to the
tool calling CAIS. Using Ada exception mechanisms in the Abstract Machine provides an excellent
definition of status returns for CAIS. With any other formal semantic description (axiomatic or

0 denotational) a reasonable overhead equal to describing Ada language exceptions is incurred.

One use of Ada exceptions within Abstract Machines illustrates the problem of over
specifying semantics. For instance, suppose the CAIS specification indicates an incomplete order
for generating status exceptions to allow for flexible implementations. Thus, when a CAIS routine
is called with arguments that would produce multiple status exceptions, the specification does not
impose a complete order for checking. An Abstract Machine description does, however, fully

specify the order of status checking.

0 5.1.2 Process Control.
The Process Control section of CAIS provides routines to create and manage the execution of

Ada programs. Facilities are included for different forms of invoking processes, awaiting

completion, and manipulating built-in process attributes.

0 The Abstract Machine description relies on Ada's tasking facilities to describe asynchronous
processes in the CAIS environment. For example, in the Abstract Machine description [SRI-85], a

process node is represented as a dynamically created (allocated) record object. Components of the
object contain instances of vsk types which provide the parallelism and synchronization needed for

* spawing and awaiting processes. A user's process structure is built dynamically and is a tree of
tasks. Each process includes tasks for synchronization and for representing the Ada program. An
example of two CAIS processes is shown in Figure 6. Process node 1 has spawned
Process node 2, and the spawned_process task is used to synchronize among processes.

Again, the use of Ada's tasking facilities in the Abstract Machine description alleviate the need to

formally redefine asynchronous facilities in some other descriptive technique. Both axiomatic and
Jenotational approaches have a cumbersome time accommodating concurrency. Tasking is well
understood by the users of a CAIS specification, which eases comprehension. However, we note

* that a formal specification of Ada tasking does not yet exist.

Applying Semantic Description Techniques to Kernel Facilities

0 33

PARENT WAIT()~process /,,-process
e

AdaPROCESS_COMPLETE(

program

I,. entry call

task in record
Figure 6. Sample CAIS process structure.

0
5.1.3 Inaut and Output.

Routines for manipulating file nodes of various types are included in the Input/Output section
of CAIS. Further support is provided for common types of terminals and magnetic tapes. To

construct an Abstract Machine description of this section of CATS, the Abstract Program must 9

create software devices that appear to the CATS just as actual devices would appear. While it is

possible to define a majority of the input/output facilities using an Ada-based Abstract Machine,

some routines do not lend to formal specifications using any technique. Facilities to require the
operator to physically mount or dismount tapes from a drive exemplify those difficult to define 0
formally. Although one could formally define routines requesting these services, the need to

formally define such facilities can be argued.

9

Applying Semantic Description Techni fues to Kernel Facilities

34 0

5.3 ANALYSIS OF ABSTRACT MACHINES

An Ada-based Abstract Machine description of CAIS provides some distinct advantages in

the progression to a more formal specification of CAIS. Some of theses advantages would be lost

if the Abstract Machine description was not Ada-based. For example, an Ada-based description

can be constructed quickly. If another language were used, then the problems of translating the

meanings of asynchronous activity and exception handling into the notation of that language would
need to be overcome. Additionally, an Abstract Machine description in another language would not

be as comprehensible to the Ada commmunity as is a specification in Ada. To be a complete formal
specification of CAIS, an Ada-based Abstract Machine description must be accompanied by an

appropriate formal specification of the machine instruction set. Inventing and defining appropriate

instructions to augment Ada could be done to deal with drawbacks such as over specification.

6. AXIOMATIC DESCRIPTION

One of the ubiquitous comments received from the public review of CAIS 1.1 is the need for
a semantics. There are a variety of methods for presenting a formal semantics, and this section

treats the axiomatic approach. There is no escaping the fact that some degree of mathematical

maturity is required to comprehend any formal semantics. It is our feeling, however, that axiomatic
semantics is comprehensible to a large set of CAIS readers.

Axiomatics was first presented by Hoare [HOA-69], and has been applied to various

languages; the most notable of which is PASCAL [HOA-73]. London [LON-78] has applied the
method to EUCLID, which is especially interesting since the langauge was designed with the goal

of simplifying program proofs. A large portion of this presentation is based on Yelowitz

[YEL-84].
In a mathematical sense, a theory is defined by applying the Axiomatic method to a

programming langauge. The theory consists of a language for expressing theorems, a set of

axioms and rules of inference. A theorem of the theory is a program together with its input and
output specifications. Minimally, it is required that all theorems of the system be programs which

match their specifications; that is, the system must be sound. Axioms and rules of inference are

* defined to determine whether or not a program and its specifications form a theorem. If a program

and its specifications are derivable from the axioms and rules, then they constitute a theorem.

By derivable, we mean that there exists a proof of the theorem in the system. A proof is a

sequence of statements in the theory that begins with an axiom and ends with the theorem. Each

* statement in the sequence is either an axiom or it is a statement that can be written by applying a rule

Applying Semantic Description Techniques to Kernel Facilities

• 35

0

of inference to statements preceeding it in the proof.

Syntactically, the theorems of the system take the form:

I-- P {S}Q.

Where S is a statement or set of statements of the programming language and P and Q are

predicates (assertions) over the identifiers used in S. Our statements are Ada langauge statements

augmented by calls to CAIS interfaces. The turnstile, 1--, indicates that P{S}Q is a theorem of the
system. Intuitively, P{Q}S can be interpreted to mean, if P is true before execution of S, then Q

will be true after execution provided S halts. 0
An axiomatic semantic description of CAIS can be formulated in conjunction with that of the

Ada language. Assuming that such a definition of the language already exists, we outline here how

it may be augmented to accommodate CAIS. CAIS interfaces may be treated in the same manner as

other procedures or functions invoked by an Ada program. Input and output predicates may be 0

constructed to define what the procedure does. The free variabls of the predicates are the
parameters and nonlocals referenced by the procedure. A rule for the CALL statement defines how

the input and output assertions are used to prove procedure calls. Although input and output

assertions could be defined in this manner, we choose to represent the meaning of CAIS facilities 0

with Axioms (schemes) to more accurately reflect the relationship between CAIS facilities and the

language.
We now present the background needed for the Axiom scheme for the Node Model routine

COPYNODE. To do so requires formalization of notions such as types of nodes, contents of

nodes, attributes of nodes, and relationships among nodes.

6.1 The CAIS Node Environment

The node environment can be described as a directed graph in which arcs are labeled and may

possess attributes. We define NODES to be the set of nodes in an APSE.

The set ARCS includes all directed edges in the graph. Thus:

ARCS e (NODES X NODES)

If the pair (nl,n2) c ARCS then there is a directed edge from n1 to n2. We refer to an

element of ARCS with the shorthand ai.Labels formalize the relationships that ARCS represent.

LABELS is a set of

Applying Semantic Description Techniques to Kernel Facilities

36 0

(relation_name, relationship_key)

pairs associated with each arc in CAIS. The function LABEL names each arc with the

appropriate pair as:
LABEL : ARCS --> LABELS

A pathname is a sequence of labels. Thus, using the Kleene star, all valid pathnames are in:

LABELS (LABELS*).

OUTARCS is a function providing for each node, a set of all arcs emanating from the node.

OUTARCS : NODES --> 2 ARCS

0 That is, an edge is in the set of out arcs of a node, n, when it emanates from n.

a e OUTARCS(n) ill 3 n1 e NODES and a = (n, nl) e ARCS

Similarily we define INARCS to be the set of all edges emanating to a node.

INARCS: NODE -> 2 ARCS

The predicate ISPRIMARY partitions the set of arcs into primary and secondary

relationships. CAIS requires that all primary relationships maintain the hierarchical structure of
nodes. We describe this requirement using the following:

ISPRIMARY: ARCS --> {true, false}

Any node (except the system root) must have exactly one primary relationship emanating to it. This

CAIS requirement can be expressed as:

V n e NODESI n # SYSTEMROOT and V a,b e INARC(n)
SINK(a) = SINK(b) ==> not ISPRIMARY(a) or not ISPRIMARY(b)

Where SINK is the node an arc emanates to: SINK: ARC --> NODE

CAIS specifies that distinct arcs emanating from a node must have distinct labels. To
describe this property, we have the following predicate:

V n e NODES, V al,a2 e ARCS

al, a2 E OUTARCS(n) and al * a2 ==> LABEL(al) # LABEL(a 2)

For notational convenience, we define the following:

V (x,y) e ARCS, R e LABELS

Applying Semantic Description Techniques to Kernel Facilities

*P 37

P(x,R,y) denotes ISPRIMARY((x,y)) and LABEL((x,y)) = R

P(x,R,y) means there is a primary relationship from x to y labeled R, and

S(x,R,y) denotes not ISPRIMARY((x,y)) and LABEL((x,y)) = R

S(x,R,y) means there is a secondary relationship form x to y labeled R.

There is a partitioning of the set of nodes into four disjoint subsets:

PROCESSNODES,

STRUCTURALNODES,

FILENODES,

DEVICENODES, and

QUEUENODES.
These subsets, which represent the different types of CAIS nodes, allow the axiomatic

description to distinguish characteristics particular to different types. 0

6.2 SEMANTICS OF COPY NODE

This interface is used to make a copy of a file or structural node having no primary 0

relationships emanating from it. Secondary relationships emanating from the node are copied, as

appropriate. The syntax of one overload of the routine is:

procedure COPYNODE (FROM,TOBASE: in NODE TYPE;
TO KEY: in RELATIONSHIP KEY;
TO RELATION in RELATIONNRAME:=
DEFAULT_RELATION);

Our goal is a predicate transformer for each interface of the CAIS. Since the transformers

can be quite extensive, we present one by its parts. A shorthand notation is also used to avoid

complexity. The predicate transformer for a NAME-ERROR is:

(NOT (RLN,KEY) . LABELS) or

(3 n e NODES I (BASE,n) e ARCS and LABEL((BASE,n)) = (RLN,KEY)) 0

{ COPYNODE (FROM, BASE, KEY, RLN) }

NAMEERROR

The meaning of this transformer is: if prior to executing the call to COPYNODE the

relation name, relationship key pair are either illegal or the node to be created already exists then, if 0

Applying Semantic Description Techniques to Kernel Facilities

38 0

execution of COPYNODE completes, the predicate NAMEERROR will be satisfied. To simplify
and continue the example, we present an abbreviated form of the transformers for USEERROR,

STATUSERROR and the functionality of COPYNODE.

USEERROR is generated according to the following predicates. First, USEERROR is
raised when there is a primary arc emanating from the source of copying.

3 n F NODES I (FROM, n) £ ARCS and PRIMARY((FROM,n))

Next, when the node to be copied (FROM) isn't either a FILENODE, or a

STRUCTURALNODE, USEERROR is generated:

not FROM £ FILENODES and not FROM e STRUCTURALNODES

The status of a node is defined by the function NODESTATUS as:
NODESTATUS : NODES --> {OPENED, CLOSED,

UNOBTAINABLE, NONEXISTENT)

With this we can define the predicate transformer producing a STAUS ERROR as:
NODESTATUS(FROM) OPENED or NODESTATUS(BASE) OPENED

Normal Action. With these definitions for exceptional conditions, we can define the
predicate transformer for a call to COPYNODE in which the copying actually takes place. The

exceptional status conditions given above can all be placed into a single predicate transformer. To
do so, the precondition for each precludes the others, as does the corresponding postcondition.

Each unit of the predicate transformer corresponds to a separate action. Below is the transformer

describing normal operation of COPYNODE. The precondition is abbreviated as not
STATUS-EXCEPTION to indicate that no status returns occur. In that instance copying takes

place.

not STATUSEXCEPTION {COPYNODE(FROM, BASE, RLN, KEY)}
3 n e NODES I (BASE, N)e ARCS and P(BASE,(RLN,KEY),n)

and LABEL((BASE,n))=(RLN,KEY) (0)

and CONTENTS(n) = CONTENTS(FROM) (1)

and (ATTRIBUTES(n)= ATTRIBUTES(FROM) (2)

and KIND(n) = KIND(FROM) (3)

Applying Semantic Description Techniques to Kernel Facilities

*0 39

and 3 a E ARCS I a=(n,BASE) and LABEL(a) = (PARENT)
and S(n,(PARENT),BASE (4) 0

and V a E ARCS I a(FROM, FROM) 3 b E ARCS
b=(n,n) and LABEL(a)=LABEL(b) (5)

and V a e ARCS I a*(FROM,FROM) and LABEL(a)#(PARENT)

3 b c ARCS I b=(n,SINK(a)) and LABEL(b)=LABEL(a) (6)

The postcondition for normal operation is lengthy, so its components are explained by line

number. Line (0) indicates that a new node, n, has been created with a primary relationship

emanating from BASE to the node. The relation and key are as specified through arguments. 0
Note, however, that the CAIS indicates that the key may not be the argument. If a '#' appears as

the key or appended to the key, then CAIS returns a unique key. This could be expressed

axiomatically by adding additional conjuncts to both the pre and post assertions.

Lines (1), (2), and (3) indicate that the contents, attributes, and kind of the copied node •

match the original. Lines (4), (5), and (6) describe the newly created relationships emanating from

the copy. Line (4) indicates that the secondary relationship, parent, for the copied node is set to
BASE. CAIS indicates that any secondary relationships that emanate from the node to be copied

must exist in the copied node as relations emanating back to the copied node. Line (5) defines this
situation. Note that it is not necessary to specify only secondary relationships in the predicate since

there are no primary relationships emanating from a node to itself. Line (6) indicates that there
exists a secondary relationship in the copied node for all others of the from node. Thus, for all arcs

from FROM, which don't point to FROM and which aren't parent relationships, there is a

corresponding arc from the copied node with the same destination and label.

6.3 Analysis of Axiomatic Semantics

Axiomatic descriptions that rely on first order predicate calculus, which we have assumed

here, can be characterized as removing all temporal information from the description. Having no

order specified alleviates the problem of over specification that was found with Abstract Machines.
Since time is not specified, one is tempted to state that some forms of status returns from kernel

interfaces can't be specified. For instance, suppose the kernel indicates that "when conditions for
status A and status B are both satisfied, that A is to be signaled". This can, however, be described

axiomatically with predicates indicating that B is raised only when the conditions causing it exist

and those causing A don't; that is, it is not a temporal condition.

Applying Semantic Description Techniques to Kernel Facilities

40

There are, however, two problems arising from the lack of temporal information. First,

aliases may exist. In CAIS, two names within a CAIS implementation may refer to the same

object. For example, suppose a single object is used as the argument to two or more in/out

parameters for an interface. To answer the question: which value produced for the parameters will

be given to the argument, requires temporal information about the implementation (indicating which

receives a value last). Second, asynchronous and parallel computations require greater descriptive

capability. The inability to specify time dependencies also implicates the inability to specify time

independencies. The CAIS process model provides interfaces for concurrently executing

processes, as well as for communication and synchronization among processes.

Exception handling causes no problem to axiomatic descriptions providing that the routine

signaling the exception also handles it. In the CAIS this is rarely the situation. Exceptions are used

to return status information. Although an axiomatic description can be generated to indicate that a

status exception has been raised, the action performed to handle the exception is cumbersome to

describe. Thus although we can describe the CAIS, we can't describe the meaning of a program

that uses CAIS facilities. Binding a raised exception to a handler in Ada depends on the execution

flow through the program. The procedure call history is needed when nested procedure calls are

made. Ada's rule for binding exceptions requires that the exception be propagated outward to all

* calling procedures until one containing a handler is found. The program execution path needed for

this binding is not available from static analysis.

7. DENOTATIONAL DESCRIPTION

* 7.1 Denotational Semantics: Pragmatics

The denotational approach to formal semantics involves specifying abstract mathematical

meanings to objects, in such a way that the meanings of the objects are modelled by the

mathematical abstractions giving the meanings of the elements making up the object. The

mathematical entities that are used for this purpose (the denotations) are well-understood classes of

sets and functions. The denotational approach is suitable for modelling machine-independent

meanings because of its emphasis on mathematical constructs. The denotational approach has

frequently been used for the formal implementation-independent specification of programming

0 languages, and for deriving rules for proofs of program properties (an axiomatic semantics).

The essential idea in a denotational semantics is to map the syntactical structures (some sets

and functions) of a language onto some semantic structures (other sets and functions). This is done

so that every legal program in a language can be mapped into its meaning. The approach taken is

* to describe the semantics of a construct in terms of its sub-constructs. The use of the denotational

Applying Semantic Description Techniques to Kernel Facilities

4 41

approach is applicable to certain types of sets, called domains, in order to insure convergence in

the recursive application of functions. The formal mathematics of this approach was presented by

[SCO-711.

There are several notations (or "meta-languages") for specifying a denotational semantics.

The most common one, used by [TEN-811, [GOR-79] and [STO-79] is a variant of Lambda

Calculus. This notation, while mathematically precise, is hard to read by many programmers and

language implementers. Other notations that have also been proposed include the "Ada-like"

notation in the Ada Formal Semantic Definition [INR-80], and the notations developed in the

Vienna Definition Method [BJO-82].

Many of these notations have automated facilities that help evaluate and sequence a large

number of recursive function calls that establish the meaning of a construct. For example,

[KIN-83] has developed tools for testing the denotational semantic definitions of programming

languages, as long as these languages are defined in AFDL+ (an extension of the INRIA notation).

Mosses [MOS-76] has also developed the Semantics Implementation System based on the notation

in [GOR-79]. These systems run programs that "execute" the meta-language equations defining the

semantics of a construct. In one sense, development of these tools results in an operational

semantics of a construct.

Denotational semantics have been used to formally specify programming languages,

compilers [CLE-85], interpreters [STO-79], and databases [BJO-82]. There is also a formal

specification of concurrency presented using denotational semantics [CLI-81]. Some of the issues

involved with specifying kernel facilities based on the denotational approach were first addressed in

[FRE-82] and [FRE-85]. In the following sections, we show what is entailed to develop a

denotational semantics for kernel interfaces.

7.2 Denotational Semantic Domains

The denotational semantics of a kernel interface language consists of the semantics of

procedure and function calls, as well as the semantics of expression evaluation. In order to create

this denotational semantics, we need to specify the following components:
Syntactic Domains

Syntactic Clauses

Semantic Domains

Semantic Functions

Semantic Clauses

Applying Semantic Description Techniques to Kernel Facilities

42

The syntactic domains of a language consists of different syntactic categories that may be

assigned meaning. These categories may (recursively) define other categories; to assure

convergence, domains are specified. Some examples of syntactic domains are a domain of

identifiers, a domain of commands, and a domain of expressions. For CAIS interfaces, these

domains consist of identifiers, expressions, commands, and declarations.

The syntactic clauses show how a syntactic category may be described in terms of

sub-categories. For example, one clause may specify that all kernel interface commands have the

form:

C ::= open(E) I close(E)

where E is in the domain of expressions. The notation for syntactic clauses usually follows

the notation for specifying the concrete syntax (phrase structure) of a language. However, since

only the meanings of constructs and sub-constructs are emphasised, and not how a construct is

formed, this type of syntax is termed the abstract syntax.

The semantic domains consist of well-understood domains that are either given (like

the domain Bool = {TRUE, FALSE}) or are constructed from other domains. These domains

are the actual "denotations" for our semantics. The most important of these domains are the

Environment, the Store, and the Continuation domains. For example, an Environment domain

may described by the domain of functions from the domain of identifiers Ide to the domain of

denotable values Dv, or

* Env = Ide --> Dv

The domain of denotable values must be defined in terns of other domains: the denotable

values usually contain the domain of locations. The Environment is changed by the elaboration of

definitions. Stores may be described by the domain of functions from the domain of Locations

* Loc to the domain of Storable Values Sv, or

Stores = Loc --> Sv

Stores are changed by the execution of commands. The continuation domains may be

described by functions from "intermediate results" to "final results." Final program results are

* usually expressed in terms of the Store domain. For example, since the effect of executing a

command is to change the Store, the domain of command continuations is defined by

ComCont = Store --> Store

Applying Semantic Description Techniques to Kernel Facilities

* 43

As another example, since the effect of evaluating expressions is a value and a store (from

possible "side-effects"), the domain of expression continuations is S
ExpCont = [Dv x Store] -- > Store

The above expression may also be written as

ExpCont = [Dv -- > Store] -- > Store

and also as

ExpCont = Dv -- > Store--> Store

This particular form of function notation (the "curried" form) is what makes traditional

denotational semantics difficult to read.

The semantic functions are functions that specify the denotation of the syntactic
domain constructs in terms of the semantic domain constructs. For example, the semantic function

for expressions may be

E: Exp -- > Env -->Store --> Dv

This expresses the fact that the semantics of "evaluating an expression" is a value that 0
depends on an environment and a store. Semantic functions are defined for all syntactic domains.

The actual semantics for the constructs that range over all syntactic domains are

defined by semantic clauses. A semantic clause is a semantic function definition for a particular
syntactic construct. In one sense, the semantic functions form specifications, while the semantic 0
clauses actually "implement" the semantics. For example, the evaluation of the expression "1 = 1"

denotes TRUE, given an arbitrary store s, and an arbitrary environment u:

E [1=1] us =TRUE
Semantic functions traditionally utilize square brackets around syntactic constructs to increase 0

readability. Other notation for semantic clauses may correspond to more familiar programming
language syntax. For example, in the AFDL [INR-80] "Ada-like" notation.' the semantic function

E for expressions may be represented as

function EVALEXPRESSION (T: Syntax-Tree; En: Environment; S: Store) 0
return DenotableValues;

The semantic clauses for all expressions would correspond to the function bodies of

EVALEXPRESSION, for all possible elements of SyntaxTree. The disadvantage of this
notation is its ineconomy: other functions (and the non-Ada like "function type") must be defined
to achieve all meanings of the functional notation form for E. For example,

E [open (E1,12,13,E4)] u
is a function, not a value.

Applying Semantic Description Techniques to Kernel Facilities

44 1b

7.2.1 An example of Denotational Semantics for the Specification of Kernel

Interfaces

We provide an example of the denotational approach to describe the kernel interfaces

of CAIS package NodeManagement. This example shows the beginning specification that must

be specified for a denotational semantics: the domains Node and Asv, as well as most semantic

clauses are left incomplete.

Kernel Facility: package NodeManagement

Syntactic Domains

Ide The domain of identifiers with elements 11,12,

Exp The domain of expressions with elements El, E2

Corn The domain of commands with elements CI, C2,...

Dec The domain of declarations with elements D 1,D2

Syntactic Clauses

C ::= open (El,12,I3,E4);

close (I1,I2,13,14);

0 Ichange intent (I1,12,E3);

copynode(I1,12,I3,14);

I copytree (I1,I2,I3,14);

rename (11,12,I3,E4);

link (El,E2);

Iiterate (I1,I2,13,E4,E5,E6);

get-next (11,12);

set current node (El,E2);

get current-node (11);

Applying Semantic Description Techniques to Kernel Facilities

* 45

E is-open (I1)

kind (I1)

primary_name (I I)

primary_key (11)

primary_relation (I I)

pathkey (Il) I

pathrelation (I I)

obtainable (I, 12, E3)

more (El)

is-same (El,E2)

D::= I1: node iterator;

I 1: relationshipkey_pattern E 1;

I: relationnamepattern := El;

Semantic Domains
Env The domain of environments with elements u:

Env = Ide --> [Dv + {unbound}] 0

Dv The domain of denotable values with elements d:

Dv = Loc + Asv + Cc (Exceptions are denotable.)

Loc The domain of locations with elements 1.
Asv The domain of assignable values with elements a. 0

Store The domain of stores with elements s:

Store = Loc --> [Sv + {unused}I
S v The domain of storable values with elements v:

Sv = Node + Asv 0

Node The domain of nodes with elements n.

Cc The domain of command continuations with elements c:

Cc = Store --> Store

Ec The domain of expression continuations with elements k:

Ec = Dv --> Cc

Dc The domain of declaration continuations with elements d:

Dc = Env --> Cc

Applying Semantic Description Techniques to Kernel Facilities

46

Semantic functions

Semantics of expressions:

E: Exp --> Env --> Ec --> Cc

Semantics of commands:

C: Corn --> Env -->Cc -->Cc

Semantics of declarations:

D: Dec -- > Env --> Dc --> Cc

Semantic Clauses (some examples)

Commands

C [open (El,12,13,E4)] u c = {meaning}
Expressions

E [is-open (I1)] u k = {meaning}

Declarations

D [II: nodeiterator] u d = {meaningI

7.3. Analysis of Denotational Approach
The denotational approach to formal semantics can adequately specify kernel interfaces,

provided one interprets these interfaces as defining a language. The complete specification of CAIS

semantics for storage management and input/output can also be expressed, although it would be a

laborious undertaking, even if aided by automated too,,. The major tasks in these areas involve

selecting a formal mathematical model for the CAIS data structures and devices. These formal

models would then be represented in the notation chosen for the domains. Semantics for process

.management can also be described in the denotational style, assuming that a formal model of

concurrency (like Actor Semantics) is also similarly selected.
The denotational approach is not an alternative method to specifying semantics, rather, it

emphasizes a different perspective toward specification. The denotational approach corresponds to

a "top-down" solution to the problem of defining a language: the emphasis is on developing

mathematical domains and functions to model machine meanings resulting from program execution.

* The operational approach corresponds to a "bottom-up" solution, whereby the emphasis is on

constructing machine operations that will execute programs. An algebraic semantics is also a

denotational semantics; in this approach, other specific mathematical constructs are used (more

specific than domains) for representing the denotations. As observed above, a denotational

* specification becomes an operational specification if tools are provided that can "execute" the

Applying Semantic Description Techniques to Kernel Facilities

* 47

denotational semantic notation. Both approaches are used to construct rules of program properties

to enable an axiomatic semantics.

8. CONCLUSIONS AND RECOMMENDATIONS 0

We have described how several semantic description techniques would be applied to a set of

kernel facilities, using CAIS as an example. Considering informal methods, such as English

narrative and example use, we have shown that these techniques are most useful during the 0

developmental stage. They are quickly prepared and easily comprehended, which are important

criteria for design reviews. The techniques lack in that it is easy to prepare descriptions that don't
adequately treat details and are ambiguous. One recommendation is to explore a narrative

description that is developed in close conjunction with a formal description. By doing so, the
resulting description would be precise and nearly complete, as provided by the use of a formal

definition as a basis. Further, the result would be more comprehensible than the formal

specification.
Abstract Machine, Axiomatic and Denotational descriptions of kernel facilities have also been 0

studied. These techniques have all been found to contain strengths and weaknesses with respect to

the task at hand. The Abstract Machine description we presented, while comprehensible to the Ada

community, lacks in applicabiliy to other sets of interfaces. Further, the reader of Abstract Machine
programs is tempted to infer a single implementation technique. It is all too easy to adopt the 0

techniques used in the Abstract Machine. The primary advantages of the Abstract Machine

descriptions presented are:

1. All sections of the CAIS are equally well described.

This is an attribute that is not shared with other methods. 0

2. The technique lends to an early and complete operational

definition.
3. Although the description is not formal, it defines the CAIS

in terms of the Ada langauge; thus centralizing related 0
products.

An axiomatic description of the node management faciltiy COPY NODE is presented in the

paper as an example. It demonstrates an application ameniable to axiomatic description. With few

exceptions, an axiomatic description of the Node Management section of CAIS provides a •

Applying Semantic Description Techniques to Kernel Facilities

48 •

straightforward semantics. As noted, it is difficult to describe exception status returns and

constructions allowing aliases Axiomatically. To describe the process control facilities of CAIS,

additional formalism is needed. Additionally, an axiomatic description of input/output facilities

would be bulky. The Axiomatic method does, however, lend itself to proving properties of

programs using CAIS facilities.

* Adaptation of denotational semantics to CAIS is also straightforward for the Node
Management facilities. Existing denotational mechanisms can be applied directly from denotational

descriptions of programming langauges. Again with this approach, input/output and process

control present the greatest challenge to a concise denotational description.

0 It is not clear which approach is best (or whether one is indeed best from all perspectives).
An operational approach would probably easier to understand (but harder to modify or check for

consistency or completeness) than a denotational spercification; conversely, a denotational

specification is more amenable to a machine independent meaning. This last characteristic is

0 important for achieving interoperability and transportability. On the other hand, the use of

denotational semantics for the specification of concurrent computation in Ada has not been as

adequately addressed as in some other languages; this implies that for process management, at

least, many researchers are more comfortable with an operational approach.

0

9. REFERENCES

[HOA-69] Hoare, C.A.R. "An axiomatic basis for computer programming", Communications of
0 the ACM , Vol. 12, No. 10, (Oct. 1969) pp.5 7 6 -8 3 .

[HOA-73] Hoare, C.A.R. and Wirth, N. "An axiomatic definition of the programming language
Pascal", Acta Informatica, Vol. 2, pp. 335-55.

[KAF-82] Kafura, D., Lee, J.A.N.; Lindquist,T.E. and Probert, T. "Validation in Ada
• programming support environments", Technical Report Department of Computer

Science, CSIE-82-12, Virginia Tech Blacksburg Virginia.

[LIN-84] Lindquist,T.E. and Facemire,J.L., "A specification technique for the common APSE
interface set", Journal of Pascal, Ada and Modula-2, Sept/Oct.

* [LIN-85] Lindquist,T.E. and Facemire,J.L. "Using an Ada-based abstract Machine description of
CAIS to generate validation tests", proceedings of the Washington Ada Symposium,
ACM, March 1985.

[LON-78] London,R.L.; et.al "Proof rules for the programming language Euclid", Acta
Informatica Vol. 10, pp. 1-26.

Applying Semantic Description Techniques to Kernel Facilities

* 49

[SRI-851 Srivastava,C.S. and Lindquist,T.E., "An abstract machine specification of the process
node section of CAIS", proceedings of the Annual National Conference on Ada
Technology , Houston Texas, March 1985.

[YEL-84] Yelowitz,L. "Toward a formal semantics for the CAIS", Public Report of the
KIT/KITIA, Vol. III, 1984.

[BJO-82] BjomerD., Jones, C., Formal Specification and Software Development, Prentice-Hall
International Series in Computer Science, 1982.

[CLI-81] Clinger, W., Foundations of Actor Semantics, AI-TR-633, MIT Artificial Intelligence
Laboratory, May, 1981.

[CLE-851 Clemmensen, G., Oest, 0., "Formal Specification of an Ada Compiler- A VDM Case
Study," Dansk Datamatik Center, 1983-12-31, 1985.

[FRE-85] Freedman, R.S., Programming with APSE Software Tools, "Chapter 5: Addendum:
Formal Semantics," Petrocelli Books, Inc., Princeton, 1985.

[FRE-82] Freedman, R.S., "Specifying KAPSE Interface Semantics," in Kernel Ada
Programming Support Environment (KAPSE) Interface Team: Public Report Volume II
(P. Oberndorf, ed.), NOSC TD 552, October, 1982.

[GOR-79] Gordon, M., The Denotational Description of Programming Languages: An
Introduction, Springer-Verlag, New York 1979.

[INR-80] INRIA, Formal Definition of the Ada Programming Language (Preliminary Version for 0
Public Review), Ada Joint Program Office, November 1980.

[KIN-83] Kini, V., Martin, D., Stoughton, A., Tools for Testing the Denotational Semantic
Definitions of Programming Languages, ISI/RR-83-112, USC, May, 1983.

[MOS-76] Mosses, P., "Compiler Generation Using Denotational Semantics, in Lecture Notes in S
Computer Science, Vol. 45, Springer-Verlag, New York, 1976.

[SCO-71] Scott, D., Strachey, C., "Towards a Mathematical Semantics for Computer Languages,"
Proceedings of the Symposium on Computers and Automata (ed. J. Fox), Polytechnic
Institute of Brooklyn, New York, 1971.

[STO-79] Stoy, J., Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory, MIT Press, Cambridge, 1979.

[TEN-81] Tennent, R., Principles of Programming Languages, Prentice-Hall International, 1981.

Applying Semantic Description Techniques to Kernel Facilities

50 0

Applying Semantic Descrip ioQn

Tech to CA

May 14, 1986

presented by:

Timothy E. Lindquist
Arizona State University
(csnet: Lindquis@asu)

other authors:
Roy S. Freedman Polytechnic University
Bernard Abrams Grumman Aircraft Systems
Larry Yelowitz Ford Aerospace

* 51

OUTINE

" Motivation and Background

" English Narrative and Examples

" Ada-Based Abstract Machine

" Axiomatic

" Denotational

52

* Why a Semantic Descrpto of CAIS

• Directed I mplementations
0 User's Reference (tool writer)

* a Constructing Proofs of Tools
a CAIS Design Feedback

* • Validation of Implementations
0 Definition of the Interface

Who are the Users?

a CAIS Designers

* * Tool Writers

@ Implementors
e CAI S Validation Contractor

* 53

CAIS NODE MODEL

NODE KINDS

STRUCTUR.L

PROCESS

FILE (Secondary storage, queue.
terminal, tape drive)

RELAT! ONS HIPS

PRIMARY or SECONDARY

RELATION NAME (Predefined, User-defined)

RELATIONSHIP KEY (Latestkey)

ATTRIBUTES

CONTENTS

PATHNAME

'USER(JONES)
'USER(JONES)'DOT(ADI R)
'USER(JONES).A_DIR

54

GAlS NODE MODEL

STUTR

ATRBUE

NOD

REAINSI-E

0TRBUE

PRCS TUCUEFL

0OEND

0 55E

LOGIN PROCESS

USER 1JEP'DEVICE
(SYSTEMrIjIGR) (user..id terminal..id

LEVEL .:LEVEL FL
NOE* OE :NODE 0

-CURRENT-INPUT

LOGGD- CUPPEN L..OUTPUT
UTILITIES.LGE.

IN

fSTRUCT STRUCT.RO
PROCESS

NODE

PWD ASH
ACTIVEJJSER l atest-key)0

'ADOPTED-.ROLE

56

LIST UTILITIES

LIST KIND:

EMPTY iy

UNNAMED B"A", 'B"

NAMED "A => "HI", B => "LOW")

ITEM KIND

STRING ("APPLE")
(PASSWORD => "DAVID")

INTEGER (2, 7)
(AGE => 301

FLOAT 133.3, 45.0)
(WEIGHT => 162.5)

IDENTIFIER (OPEN)
(MODE => PIPELINE)

LIST (("DAVID", 2), (OPEN))
(SIZE => (2.2, 4))

57

PROCESS CONTROL

SPAWN - immediate return o mne calling process

INVOKE - return when the process completes

0

CREATE JOB - creates root process node

DETERMINE STATUS - ready, suspended,
terminated, aborted

APPEND I GET RESULTS

GET PARAMETERS

ABORT I SUSPEND I RESUME

58

Informal Semantic Specication

Natural Language:

e verbose

e ambiguous
* • context dependent

a incomplete

By ExJamlR- small programs or parts using
* • Tool fragments

a Test programs from validation suite

Recommendation: Construction based on
* Formal description to:

@ reduce tendency to incompleteness
@ remain comprehensible and concise

5q

pa " in tY1 e CAIS usingan
Ada-Based Abstract -Machine

Specification Components:
a Syntax - Ada Package Spec's
@ Functionality - Abstract Machine
a Interactions
e Pragmatic Limits

Abstract Machine:
1. Storage - Ada and primitives
2. Instructions -Ada and primitives
3. Processor

60

Pragmatic Limits:

* Use Limits OPEN NODE COUNT

* • Value Limits NAMESTRING of at

least 255 characters

Interactions:

* Within CAIS

a Functional Dependency

e Use Sequences

a With Tools

a Login creates needed attributes

@ Linker produces load image

a With Ada Run-Time System

a Exception Handling

a Parameter Mechanisms

* 61

Axiomatics Applied to CAI S

Approaches:
* User defined extension

* Use an approach to verifying the
Abstract Data Types. (alphard)

• Language defined extension
* Invent rules for each routine and

supporting axioms describing

CAI S types and objects (node
model)

62 •

* Example:

procedure COPYNODE (
FROM, TOBASE: in NODETYPE;
TOKEY: In RELATIONSHIPKEY;
TORELATION: In RELATIONNAME

:= DEFAULTRELATION);

Make a copy of a file or structural node having no
primary relationships emanating from it. Secondary
relationships emanating from the node are copied as
appropriate.

63

Definitions:

NODES = the set of CAIS nodes

ARCS subset of NODES X NODES
such that (ni ,n2) in ARCS if there

is a directed edge from nl to n2.

LABELS= { (RLN, KEY) I
RLN and KEY are Ada identifiers }

LABEL = ARCS -> LABELS

a name function for arcs.

64 0

Axiomatic Summary:

* Alias - CAI S objects may have many
names.

* a Asynchronous Facilities (concurrency)

e Exception Propagation

e Input and Output Facilities

65

Denotationa Apprah

Define meanings functionally in terms of the
syntactic components of the language
elements (interface procedures)

Example, node model:

Syntactic domains

ide identifiers 11, 12,...
Exp expressions El, E2, ...
Coin commands C1 02,...
Dec declarations Dl, D2,...

Syntactic Clauses

C::= open(El,12,13, E4);
close(11, 12, 13 14);

E isopen(11);

66

Semantic Domains

Env environments u
* Env = Ide -> [Dv + {unboundedl]

Dv denotable values d
Dv = Loc + Asv + Cc

* Loc locations I
Asv assignable values a
Store stores s

Store = Loc -> [Sv + lunusedi]
Sv storable values v

Sv = Node + Asv
Node nodes n
Cc Command continuations c

* Cc = Store -> Store
Dc declaration continuations d

Dc = Env-> Cc
* Ec expression continuations k

Ec=Dv -> Cc

* 67

Semantic functions

Expressions:
E:Exp -> Env-> Ec -> Cc

Cornmands:
o :Com -- > Env -- > Cc -> Cc

Declarations:
D:Dec --> Env -> Dc -> Cc

68

ConclusLi

* There is no single formal method
that will uniformally satisfy needs

A combination of methods should
* be investigated

* A formal definition of CAIS should
,* be constructed

69

MAVEN: The Modular Ada Validation Environment

Norman H. Cohen

SofTech, Inc.
One Sentry Parkway, Suite 6000

Blue Bell, Pennsylvania 19422-2310

NCohen@Ada20

Abstract. The Modular Ada Validation Environment, or MAVEN, is
proposed as an integrated set of tools to support the validation
of Ada programs, by formal verification and other means. These
tools could reside in an Ada Programming SupPort Environment.
The principles underlying MAVEN are that proofs should be based
on implementation-independent proof rules; that large Ada
programs should be validated module by module; that validation by
formal proof, informal proof, testing, code walkthroughs, and
other means should be integrated; and that the specification of

* critical properties weaker than correctness should be supported.

Module-by-module validation is made possible by a validation
library, analogous to a program library. Modules can be
considered individually by distinguishing between their semantic
specifications and their bodies. MAVEN imposes validation-order

* and revalidation requirements analogous to the compilation-order
and recompilation requirements imposed by an Ada compiler.
Revalidation requirements keep validation current with program
revisions made during development or maintenance.

Besides a verifier and a validation-library manager, MAVEN
* includes reporting tools, tools for building and administering

validation plans, tools to help write formal specifications, and
tools to retrieve reusable software components based on their
formal specifications. These tools provide benefits during all
phases of the software life cycle.

* 71

Besides the many technical issues associated with formal verification of
Ada programs, there is a broader software engineering issue: how formal
verification can be applied most effectively throughout the life cycle of Ada
software. This paper proposes a set of integrated tools and procedures that
support the validation and verification of Ada software on a module-by-module
basis. We expect that validation and verification will be accomplished
partly through formal proof and partly through other means.

We call the proposed toolset the Modular Ada Validation Environment, or
MAVEN. (The Yiddish word maven means an expert, authority, or master in some
field.) MAVEN does not yet exist, nor have efforts begun to construct it.
Rather, MAVEN is our vision of the context in which Ada formal verification
should be applied.

1 Definition of a Validation Environment

When software engineers use the term "validation and verification," they
usually do not have formal verification in mind. To avoid confusion, this
paper will use the terms validation and verification in two distinct and
precise senses:

Verification is the use of formal proof, checked by machine, to
establish properties of a program's run-time behavior.

Validation is the process of increasing one's confidence in the
reliability of a program. Unlike correctness, reliabilit is a
matter of degree: A program containing even one error is
incorrect, but a program containing only a few errors may highly
reliable for its intended purpose. There are many methods for
validating software, including formal proof, informal proof, code
reviews, and testing.

Confusion may also arise from our use of the term environment. Ada
Programming Support Environments (APSE's) already exist, and have functions S
that overlap those we propose for a validation environment. We do not
envision MAVEN as a full APSE or as a tool set independent of an APSE.
Rather, we view MAVEN as an integrated tool set embedded within an APSE. It
can be thought of as a "subenvironment." Many APSE tools, including an Ada
compiler, may be used both for validation and for other purposes.

72 5

2 Underlying Requirements

Our vision f MAVEN is based on several requirements that we have

* identified for the validation of Ada programs. These requirements are based

on the recognition that Ada programs for mission-critical applications are

large, that skilled software engineers are in short supply, that the
construction of a verifier is an expensive undertaking, and that the use of a
verifier may be time consuming. Our requirements are as follows:

* 1. Formal proofs should not be based on the behavior of a particular

implementation.

2. It should be possible to validate a large program module by module.

3. For typical mission-critical applications, verification will have to be

* integrated with other forms of validation.

4. It should be easy to request the proof of certain critical properties
which, while they do not imply correctness of a module, significantly

raise our confidence in its reliability.

* The following subsections describe these requirements in greater detail.

2.1 Implementation-Independent Verification

Verification is based on proof rules formalizing the behavior of an Ada

* program. If the proof rules are based only on the rules that appear in the

Ada Language Reference Manual and apply to all implementations, then all

proofs will be implementation-independent. Such proof rules are much harder

to write, and may be more expensive to use during verification, than proof

rules based on the behavior of a particular implementation. Nonetheless, it
would be a serious mistake to build a verifier based on the behavior of a

* particular implementation.

2.1.1 Difficulty of Writing Implementation-Independent Proof Rules

Because the rules of the Ada language provide great latitude for

* implementation variations, it is difficult to write proof rules that, on the

one hand, are consistent with any legal implementation of the language and,

on the other hand, are strong enough to provide meaningful information. For

example, a perverse but legal Ada implementation could raise StorageError

upon activation of the main program, making it impossible to compute

anything. Implementation-independent proof rules must account for this

* possibility, yet allow meaningful deductions to be drawn about how a program

will behave under more reasonable implementations. Other allowable

implementation variations include the order of subexpression evaluation, the

* 73

disregarding of arithmetic overflow, the use of internal representations that
avoid overflow, and the application of optimizations that change the apparent
site of an exception.

There are a number of ways to ameliorate the difficulties inherent in
writing implementation-independent proof rules for a language with
implementation variations:

- The proof rules may apply to a subset of the Ada language that excludes 0
features with no meaningful implementation-independent semantics, such
as address clauses and unchecked conversion.

- In some areas, such as order of subexpression evaluation and choice
parameter passing mechanism, exhaustive proof rules can be written that
cover all possible implementation variations. Such rules have the
potential to transform postcondition formulas into exponentially long
precondition formulas. In practice, however, the combinatorial
explosion can be avoided by simplifications that apply whenever the
programmer follows reasonable style guidelines like avoiding expressions
with side-effects and disregarding the values left in actual parameters
after a subprogram call propagates an exception. (Such guidelines are
appropriate in most Ada software and virtually mandatory for portable
software.)

- The proof rules can be selectively ignorant. Proof rules might ignore
certain aspects of a computation that vary from implementation to
implementation rather than trying to reflect all possibilities. For
example, the state of variables updated in a frame is uncertain when
control reaches a handler in that frame for some predefined exception,
because optimizations may have moved the exception-raising operation
before or after the variable-updating operation. Rather than trying to
account for all possibilities, the proof rule might simply regard the
value of the variable as unknown inside the handler.

2.1.2 Drawbacks of Implementation-Dependent Proof Rules

There are three reasons not to build an implementation-dependent
verifier. First, the details of an individual implementation's behavior are
not constrained by a universally accepted standard like the Ada Language
Reference Manual. Second, it is not cost-effective to construct an
implementation-independent verifier. Third, an implementation-dependent
verifier can verify that erroneous programs (in the narrow sense of Ada
Language Reference Manual section 1.6) and programs with incorrect order
dependencies are correct, but cannot prove that a program is portable. Let
us examine each of these problems more closely.

The language variant verified by an implementation-dependent verifier is
not definitively specified. In reasoning about the behavior of a program,
such a verifier could use characteristics like the dynamic storage allocation
strategy and the size of the internal registers used for intermediate
arithmetic results. However, these characteristics are not properly part of
a compiler's interface, but part of its internal structure. A compiler

74

writer is free to change these characteristics from one version of the
compiler to another, invalidating the verifier's proof rules.

A verifier that reasons about the behavior of a particular compiler's
object code is not cost-effective because it can only be used in conjunction
with that compiler. Anyone wishing to verify programs translated by another
compiler must build his own verifier. A single implementation-independent
compiler can be used in conjunction with all Ada compilers.

The rules of the Ada language forbid programmers to rely on certain

characteristics of individual implementations, even though such rules are
practically unenforceable. Nonetheless, an implementation-dependent verifier

would base its reasoning on just such characteristics. This would encourage
departure from the intended use of the Ada language and discourage portable

programming. In contrast, a verifier based on implementation-independent
language rules automatically proves portability of properties, because only
deductions valid for all implementations are used in a proof.

2.1.3 A Compromise

Given the technical difficulties presented by implementation-independent

proof rules and the inappropriateness of proof rules based on a parAicular
implementation, a compromise may be appropriate. That would be to base proof

rules on a large class of implementations that conform to widely agreed-upon
restrictions. In particular, substantially simpler proof rules might be

obtainable by standardizing a definition of natural Ada semantics. This
definition would be consistent with the definition of Ada semantics in the
Ada Language Reference Manual, but it would constrain implementations more
tightly.

The natural semantics would not specify characteristics like order of

subexpression evaluation, which the rules of Ada explicitly forbid a
programmer to depend on. Neither would they specify task interleaving or the

selection of selective-wait alternatives, since it is intended that the
programmer regard such matters as nondeterministic. However, optimizations

that change the apparent behavior of a program could be forbidden in the
natural semantics. (Optimizations would still be allowed in the presence cf

pragmas explicitly permitting them, but program units containing such pragmas
would not be considered verifiable.) There might also be specific rules

making it possible to predict, based on attributes like 'StorageSize and
'Size and named numbers like System.MemorySize, when StorageError will

occur.

If a definition of natural semantics could be agreed upon and widely

implemented, and if programmers could be educated to use optimization-
enabling pragmas only in the few places they prove to be needed after

performance metering, then construction of a verifier based on natural
semantics would be reasonable. Like a verifier for implementation-

independent Ada, a verifier for natural Ada would be based upon a recognized
standard. The verifier could not be used with all compilers, but it could be

used with the wide class of compilers implementing natural semantics.

Properties proven by the verifier might not hold under all implementations,

75

but the properties would be portable within the wide class of natural
implementations.

2.2 Module-by-Module Validation

The Ada language was designed to facilitate the construction of huge
programs. A pervasive theme in the design of the language is the division of
a program into units that can be understood individually yet checked for
consistency with each other.

There are compelling practical considerations in support of modular
validation. First, the amount of time required to validate a large system
all at once would be prohibitive. Second, the modular approach allows one
unit of a program to be changed and revalidated without revalidating the rest
of the program. This is especially important during program maintenance.

The validation of an individual module requires independent
specification of that module's desired behavior. Validation of the module
establishes to a high degree of confidence that the module meets this
specification. Similar specifications must be available for other modules so
that the validation can proceed without considering the contents of the other
modules.

A fundamental theme in Ada software engineering is the distinction
between interface and implementation. MAVEN carries this distinction forward
to software validation. A good specification will describe everythin 6 about
a module's behavior that is of concern to other parts of a program. Once a
module M has been validated with respect to its specification, other modules
using M can be validated by considering M's specification alone, and not M'3
implementation.

2.3 Integration of Multiple Validation Approaches

Another reason for validating programs module-by-module is so that
different modules can be validated in different ways. There are many
software unit validation methods, all uf which have been used successfully in
the past. These include:

- formal proof generated with machine assistance and checked by machine

- informal proof carried out by hand

- code walkthroughs 0

- unit testing

- acceptance of a software component as trustworthy, based on experience

using th, same component in a previous system

It is not necessary for a project to choose one of these validation methods
for use throughout a program. Given the right framework, different methods

76 0

can be combined in an effective symbiotic relationship to ensure the quality

of a system.

While formal verification is the most effective means of ensuring
consistency between a program and its specifications, it has limitations.
These include the problem of validating that the specifications themselves

specify what the customer wants; and the cost -- in both machine time and the
time of skilled personnel -- of developing and checking the proof. The
manufacture of software, like any manufacturing process, entails a tradeoff
between cost and level of quality assurance. In some programs there are
modules for which any form of validation less powerful than formal proof
would be socially irresponsible. Sometimes the same program also contains

many modules for which formal proof would be a wasteful misallocation of
resources.

Furthermore, there may be some modules that cannot be verified because
they use features of the language for which there are no proof rules.
Features may be excluded from the "verifiable subset" of Ada even if there
are occasional legitimate uses for such features. Such legitimate uses can
be isolated in modules that are validated by some means other than formal
proof. In particular, low-level features of the Ada language are inherently
machine dependent and thus not characterized by proof rules. Low-level

features can be isolated in interface modules, allowing the rest of a system
to be validated by formal proof.

Many factors combine to determine the most appropriate form of
validation of a module. The cost of formal proof must be compared with the
possible impact of an error in the module. Low-level, target-dependent

interface modules might best be validated by informal proof. For certain
hard-to-specify modules, for example a graphics display builder whose desired
output is specified pictorially, testing might be not only the cheapest, but
also the most reliable form of validation. For modules that are not
particularly critical, and for which test drivers would be difficult to
write, code walkthroughs might be most appropriate. Software might simply be
trusted (until integration testing) if it has bpen extracted from a working

system in which it has functioned reliably.

To ensure complete coverage, different forms of validation cannot be
combined haphazardly. There must be a unifying discipline. One of the
functions envisioned for MAVEN is to provide such a discipline.

2.4 Specification of Critical Properties

A formal proof is sometimes incorrectly portrayed as giving absolute

assurance of a program's "correctness." In fact, all that can ever be proven
about a program is that it is consistent with its formal specifications. If
the formal specifications do not correctly and completely reflect the
program's intended behavior, then a program proven consistent with those

specifications may not behave as intended. Unfortunately, the translation of
informal requirements to formal specifications is itself a complex and
error-prone process. In particular, it is easy to omit part of the
requirements.

77

Still, it can be quite useful to prove particular properties of a
program, even if these properties do not constitute a complete definition of
correctness. In fact, we believe that the most promising use of verification
in an industrial environment is not to prove that a program will behave
correctly, but to prove that a module has certain important properties
indicative of correct behavior. A property is a good indicator of an Ada
program unit's quality if the attempt to prove the property is likely to

uncover many of the faults iai the unit. 4

MAVEN supports the proof of a spectrum of properties that are good
indicators of a module's quality. This spectrum ranges from properties that
are difficult to specify but provide strong assurances about a module's
behavior to properties that are easy to specify but provide less
comprehensive assurances. The properties actually proven about a module will
depend on the individual module and the sophistication of the user. Some
modules may have simple, well-defined specifications while others may not.
Some modules may perform funcLions especially critical to the safety of a
system while others may not.

The properties we have identified, ranging roughly from most difficult
to specify to least difficult, are as follows:

- the validity of arbitrary logical formulas

- the correctness of a package implementing an abstract data type, with
respect to a set of axioms defining the type in terms of its operations

- the correct instantiation of a generic unit

- numeric properties (the range and precision of results)

- the absence of unanticipated exceptions

- the absence of erroneous execution (adherence to potentially unenforced
rules of the Ada language)

In time, other properties may be added to this list.

The most easily specified properties require the user of MAVEN to
provide little or no information (perhaps a list of exceptions that a module
may legitimately propagate). MAVEN automatically generates the logical
formulas that must be proven to establish these properties. This makes
formal proof, albeit formal proof of properties weaker than correctness,
accessible to a larger number of users.

73 0

0

3 Validation Libraries

Module-by-module validation of a large program can be achieved in the
same way as module-by-module compilation. Compilation of an Ada program unit
consists not only of code generation, but also consistency checking. A
unit's syntactic specification is compiled before either the unit's body or
any external uses of the unit. This compilation puts information about the
syntactic specification into a program library. Later, when either the
unit's body or an external use of the unit is compiled, this information is

0 retrieved from the program library and used for compile-time consistency
checks. If a unit's body and an external use of the unit are both consistent
with the unit's syntactic specification, then they are consistent with each
other.

The consistency checks that occur during compilation are limited to the
• information found in a unit's syntactic specification, such as the number,

types, and modes of subprogram parameters. Except for this limitation,
however, they are analogous to the checks that occur during unit validation.
Just as a unit has a syntactic specification that is checked during
compilation, it has a semantic specification that is checked during
validation. Just as syntactic specifications are recorded in a program

* library, semantic specifications are recorded in a MAVEN validation library.

3.1 Semantic Specifications

Different kinds of Ada program units have different kinds of semantic
specifications. The semantic specification for a subprogram consists of a
set of precondition/postcondition pairs, one for normal termination and one
for each exception that the subprogram may raise. The semantic specification
of a package consists of the semantic specifications of the subprograms
provided by the package. Each of these subprograms may be viewed as having
an additional, implicit parameter representing the abstract package state.
The package's semantic specification may describe how calls on a package's
procedures affect the abstract state of the package and how the abstract
state of the package affects the results of the package's procedures and
functions. (A package may have many internal states corresponding to the
same abstract state.) MAVEN's external view of a task is similar to its
external view of a package. A task has an abstract state that is passed as
an implicit in out parameter to each entry call. An entry has a logical
specification like that of a procedure, consisting of a set of
precondition/postcondition pairs. A logical specification of a task type
consists of the logical specificAtions of its entries.

Semantic specifications are textually embedded in syntactic
specifications in the form of structured comments like those found in Anna
[1]. This unifies the notions of syntactic and semantic specifications.
When MAVEN is directed to compile a specification, it invokes the Ada

79

compiler to place the syntactic specification il) the program library. If no
compile-time errors are found, the semantic specification is then extracted
from the structured comments and added to the validation library. If a
specification has already been compiled and only the semantic specification
has changed, the user may direct MAVEN to skip the first step when
"recompiling" a specification. The effect of such a recompilation is to
revise the semantic specification of a program unit but not its syntactic
specification. The validation library is updated but leave the program

library is left unchanged.

3.2 Validation Order

To facilitate compile-time consistency checks, the Ada language
restricts the order in which units may be compiled. MAVEN imposes analogous
restrictions on the order of validation. Specifically, a module's semantic
specification must be entered into the validation library before the
implementation or any use of the module is validated. Then the
implementation and each use of the module may be validated in any order.
Validation of the implementation establishes that the body fulfills the
semantic specification. Validation of a use of the module involves assuming,
while validating the using module, that the semantic specification is
correctly implemented. This assumption is permitted as soon as the semantic
specification is entered into the validation library, even before the body
has been demonstrated to fulfill the semantic specification. (This is
analogous to the compilation of a subprogram call after the subprogram
declaration has been compiled but before the subprogram body has been
compiled.) It implies that validation of one unit can proceed considering
only the specifications of the units it invokes, without considering their
bodies. This is the essence of module-by-module validation.

Consider, for example, the validation of a subprogram. First the
subprogram's precondition/postcondition pairs are entered into the validation
library. Units that call the subprogram may then be validated. In the case
of a formal proof, the precondition/postcondition pairs may be assumed true
in verifying the caller. In the case of testing, the precondition/
postcondition pairs may be used to construct an appropriate stub.

Similarly, any time after the precondition/postcondition pairs are
entered into the validation library, the subprogram body may be validated.
The method of validation for the body is independent of the validation
methods used for the calling units. In the case of formal proof, it is
necessary to show that, when invoked with a precondition true, the subprogram
returns with the corresponding postcondition true. In the case of testing,
the precondition/postcondition pair may be used to generate test drivers or
test data. Of course the validity of a proof about the caller depends on the
validity of the specifications for the subprogram, which may be validated by
some less rigorous means. Nonetheless, the proof provides strong assurances
about the logic of the caller, if not about the behavior of the caller and
the subprogram in combination.

Some program units may be validated by fiat. That is, after a code
walkthrough or simply on the basis of trust, a unit may simply be decreed to

80 0

be "validated." This still must be done explicitly, by a request to MAVEN,
and the usual validation order rules must be obeyed. In particular, a unit
may not be decreed to be validated before the specifications it is meant to
fulfill have been entered into the program library.

3.3 Revalidation Order

Just as the Ada language restricts compilation order, it imposes
recompilation requirements to ensure that consistency checks have always been
performed on the latest version of a program. If a syntactic specification
is recompiled, all consistency checks based on the old syntactic
specification are rendered invalid. The corresponding body and all uses of
the unit must then be recompiled so that the consistency checks may be
repeated with respect to the new syntactic specifization.

MAVEN imposes analogous revalidation requirements. If a module's
semantic specification is changed, both the implementation and all uses of
the module must be revalidated if they have already been validated. This is
relevant during program development and program maintenance.

In program development, the following scenario may take place:

1. The semantic specification of package A is entered into the validation
library.

2. Subprogram B, which uses package A, is validated with respect to this
semantic specification.

3. Attempts to validate the body of A are not successful. Further
examination reveals that the validation process is not at fault: A's
package body is truly inconsistent with A's semantic specification.

At this point there '- two possibilities. First, the validation failure may
have revealed an error in the package body. Once this error is corrected,
A's body may be successfully validated. Second, the validation failure may
have revealed an error in A's semantic specification. The package-body
writer may have exploited some valid assumption that was inadvertently
omitted from the semantic specification, for example. The solution here is
to correct A's semantic specification, perhaps by strengthening its
preconditions. This process serves to keep documentation current and
complete, since the revised semantic specification now reflects heretofore
implicit assumptions. However, B must now be revalidated to ensure that B
establishes the strengthened preconditions before invoking A. Just as
recompilation of one Ada unit can lead to the recompilation of many other
units, so a change to one unit's semantic specification can lead to
revalidation of many other units. In this case, if revalidation of B fails,
B's semantic specification may have to be revised. Then the body and users
of B will have to be revalidated, and so forth.

In program maintenance, revalidation requirements indicate which parts
of a large program are potentially affected by a change. This can reduce or
eliminate the ": ipple effect" typically resulting from a change to a working

81

program. A change to enhance performance might be accomplished by changing
unit bodies only, and leaving each unit's semantic specification intact.
Then it would only be necessary to revalidate the revised bodies. A change
to enhance functionality might require a change to a unit's semantic
interface, requiring revalidation of that unit's body and each of its uses.
All possible implications of the change will be flushed out by the ensuing
round of revalidations, assuming the revalidation is sufficiently thorough.
(If the revalidation is by unit testing, this process amounts to regression
testing. Rather than blindly repeating all tests, however, we use validation
dependency relatioriships to identify the tests that might possibly have been
affected by the change.)

A unit validated by fiat is subject to the same revalidation
requirements as any other unit, even if revalidation consists only of
reissuing the decree by which the unit was originally validated. This
encourages software engineers to consider whether the original decree is
still valid given the new specifications. For example, it may be discovered
that an off-the-shelf package originally thought to be applicable to the
current application is inappropriate given the revised specifications.

3.4 Other Information in the Validation Library

A validation library contains information besides the semantic
specifications of program units. A validation plan can be entered into the
library in advance, stipulating how a unit will be validated once it is
written. The validation library also records which units have been
validated, and according to which validation plans.

Each module may have its own validation plan. The plan specifies the
validation method applied to the unit (testing or formal proof, for example)
and the details of the validation criteria (which files contain the test
driver or test data, algorithms for evaluating test results, or which
properties are to be proven, for example). A validation plan may specify
several rounds of validation, all of which must succeed for the unit to be
considered validated. For example, a plan may call for testing to find and
eliminate obvious errors, followed by formal proof to ensure the absence of
more subtle errors. No one round of validation need provide complete
coverage of the unit's semantic specification. Some parts of a unit's
semantic specification may be proven valid, some validated by testing, and
some simply assumed to be valid, for example.

Besides allowing MAVEN to enforce validation and revalidation order
dependencies, the data kept in the validation library allows MAVEN tools to
generate reports on the progress of system validation to date. The reports
indicate which units have been validated and how rigorously. During
development, validation of units can be tracked and compared with schedules.
When an error arises, information about the validation methods applied to
each unit and the properties validated for each unit can help pinpoint
suspect modules. The revalidation implications of a proposed change can
quickly be estimated.

82 0

4 Other Components of a Validation Environment

The appropriate home for an Ada verifier is in a validation environment
like MAVEN, but a verifier is only one of the tools that such an environment
should provide. We have already mentioned the need for a validation
library. This implies the need for library management tools, including the
report-generation tools discussed above. Other tools can assist in the
writing of specifications, the retrieval of reusable software from a large
catalogue, and the execution and analysis of tests.

4.1 The Specification-Writer's Assistant

For.al specifications are at the heart of MAVEN, but they are difficult
for the typical software engineer to write. Therefore MAVEN must supply
tools to help the software engineer express his intent. These tools are
collectively called the specification-writer's assistant.

One component of the specification-writer's assistant is a
knowledge-based tool that will construct formal specifications based on a
dialogue with the user. Libraries of high-level specification primitives
will be employed. These might include infinite sets, primitives used in data
security specifications, and so forth.

The specification-writer's assistant also includes an interpreter for a
logic programming language, similar to PROLOG but providing the higher level
of data abstraction found in the Ada language. This tool can be used for
rapid prototyping, to test specifications as they are written. Successfully
tested specifications are then translated automatically into the MAVEN
specification language. (We assume the MAVEN specification language will be
too rich to be implemented directly.) Such an approach is suggested by Doyle
[2] as a practical way to apply artificial intelligence techniques in
software engineering.

4.2 Reusable-Software Retrieval Tool

The Ada language is meant to encourage the reuse of general-purpose
software components. This approach can only have a significant i act on
software development costs if there is a large corpus of general-purpose
software available for reuse; but such a large corpus presents an awesome
information-retrieval problem. While software retrieval is not usually
thought of as a validation problem, Platek [3) has noted that formal
specifications and verification can form the basis of a retrieval tool.

In addition to a validation library, MAVEN might include a catalogue of
general-purpose, reusable software components, all of which have been
formally specified. Given the semantic specification of a module required in

*3

the design, a MAVEN tool would search the catalogue for reusable components
that have matching specifications. Roughly speaking, the specifications will
be considered to match if two conditions hold:

1. The preconditions given in the design imply the corresponding
preconditions of the reusable component.

2. The postconditions of the reusable component imply the corresponding

postconditions of the design.

Both these conditions would be verified.

Such a tool is currently beyond the state of the art. A practical tool
will require sophisticated pattern matching, able to look past differences in
parameter order, additional functions provided by the reusable component, and
so forth. In some cases, the tool will have to recognize that instantiation
of a generic unit will produce an instance with matching specifications.

4.3 Testing Tools

Because testing is the most frequently used validation method, MAVEN

contains tools specifically supporting testing. These include tools to
generate subprogram stubs, tools to generate test drivers, tools to generate
test data, and tools to analyze test results. All of these tools can base
their outputs at least in part on the semantic specifications found in the
validation library. For embedded applications, there should be software
simulation tools and tools providing interfaces with hardware mockups.

A related tool would administer tests automatically, based on the
validation plans found in the validation library. Such a tool could also
revalidate those units validated entirely by testing, whenever revalidation
is required. In essence, this automates regression testing.

5 MAVEN and the Software Life Cycle

MAVEN tools are primarily concerned with unit validation. This can lead

to the impression that the benefits of MAVEN are primarily reaped during the
unit validation stage of the life cycle. In fact, the use of MAVEN imposes a
discipline on software development and provides benefits throughout the
software life cycle. This section walks through a typical waterfall model of
the life cycle and describes the impact of MAVEN on each stage.

5.1 Requirements Analysis

The MAVEN specification-writer's assistant supports the formal

expression of requirements. Requirements can be entered into a new MAVEN
validation library as the semantic specifications of the main program and of

84

tasks declared in library packages. These formally stated requirements can
be checked for consistency using a verifier. They may later become the basis

* for design verification and code verification. An integration-testing plan
may be derived from the formal requirements and stored in the validation
library until software integration time.

5.2 Design

During high-level design, the modular decomposition of a system is
determined and the specifications of each module are written. Algorithms for
top-level modules may also be written. MAVEN can play four roles at this
stage -- design documentation, recording of unit validation plans,
software-component retrieval, and design verification.

Design documentation consists of entering the semantic specifications
for each design module into the validation library. The specification-
writer's assistant again comes in handy here. The semantic specifications
entered at this stage become the basis for later verification of module
bodies.

Unit validation plans were discussed earlier. The appropriate time to
formulate them is just after unit semantic specifications have been
identified. Thus unit validation plans are entered into the validation
library during design for retrieval during unit development.

One of the responsibilities of an Ada designer is to look, before
specifying a new module to be written, for existing software that can be
incorporated in a design. As noted earlier, formal specifications might
provide the basis for software automated software retrieval. if MAVEN's
catalogue of reusable software components contains only verified components,
then retrieval of a given component will constitute proof that the component
satisfies the specifications in the design. No further validation of that
component will be necessary.

Because of its high level of abstraction, the Ada language is frequently
used as a program design language. Indeed, executable Ada code would be
considered a design-level specification of an algorithm if older
implementation languages were to be used. Thus the top-level algorithms of a
high-level design are expressed in executable Ada code that can be verified
in the same way as lower level modules. At this point, semantic
specifications have been written for the main system modules (the main
program and tasks declared in library packages) and the high-level modules
directly invoked by the main system modules. Using only these

0 specifications, it can be proven that the top-level algorithms correctly
implement the system specifications.

5.3 Unit Development

There is not a clear dividing line between design validation and unit
validation. The same techniques applied to the top-level modules during
design validation are applied to lower-level modules during unit validation.

35

S

The unit validation plan placed in the validation library during system
design is retrieved and applied. A round of validation is repeated until it
is successful, and then the next round specified in the validation plan is
begun. The validation plan is restarted from the first round any time a
change is made to the unit, its semantic specification, or the semantic
specifications of the modules that the unit invokes.

As noted earlier in the discussion of validation order, validation can
uncover implicit assumptions that underlie the correct functioning of a
module. This is particularly so when validation is by formal verification.
Such assumptions must be added to a module's semantic specifications if the
module is to be verified. Thus the validation process contributes to the
development of complete and up-to-date specifications.

5.4 Integration Testing

The main impact of MAVEN on integration testing will be a drastic
reduction in integration problems. The Ada compiler will already have
checked all units for syntactic consistency with each other. MAVEN will
already have checked all units for consistency with their own semantic
specifications and the semantic specifications of the modules they invoke.
The few integration problems that remain will arise from incomplete module
specifications (for example, specifications that address functional
requirements but not performance requirements) and insufficiently rigorous
unit validation (for example, use of code walkthroughs as the sole means of
validation or the use of tests that do not provide adequate coverage).

5.5 Maintenance

MAVEN will reduce the costs and risks of program maintenance. Both the
data MAVEN collects during program development and the discipline MAVEN 0
imposes on program modification will help confine the "ripple effect" of a
change. MAVEN will also keep documentation up to date after changes have
been made.

The most frequent problem associated with program maintenance is a
change that violates an implicit assumption upon which a different part of
the program depends. This problem is less likely to arise when using MAVEN
for two reasons. First, the validation process applied during program
development has served to make implicit assumptions explicit. The
documentation will warn the maintenance programmer right from the start that
certain changes must be disallowed unless further changes are made in other
modules. Second, if the semantic specification of a module is changed, MAVEN
will enforce the revalidation of all modules that may be affected by the
change. The revalidation dependencies alone clarify the potential impact of
a contemplated change. The actual revalidation, which may follow the
original unit validation plan created during the initial design, leads the
maintenance programmer to discover which potential impacts are truly
significant, to revise the affected modules, and to validate the revisions.
If the revised modules can themselves affect other modules, revalidation of
these other modules will also be required. If sufficiently rigorous,

86

revalidation anticipates and averts all possible ripple effects.

MAVEN keeps documentation current during program maintenance in the same
way that it does so during initial development. Every time a unit's semantic
specification changes, MAVEN records the fact. This makes the next round of
maintenance easier.

6 Conclusions

A verifier may be constructed as a research tool to explore the
technological frontiers of formal reasoning about programs; or as a practical
tool meant to be used in the validation of production software. Both goals
are worthy. Before undertaking the specification, design, and implementation
of a practical tool, however, it is important to consider the context in
which the tool will be used. We have described our vision of a Modular Ada
Validation Environment, MAVEN, to propose a context in which formal
verification can fit into the industrial development of Ada software.

Our vision of MAVEN is based on certain principles. First, formal proof
should be based on implmentation-independent proof rules, since such rules
correspond to a generally accepted standard, are beneficial to users of all
compilers, and can be used to prove portability. Second, large Ada programs
should le validated module by module. Like module-by-module compilation with
static consistency checking, module-by-module validation of run-time behavior
is based on the distinction between a module's specification and its
implementation, and the recording of module specifications in a library.
Third, formal proof is only one form of program validation, and proof of
correctness is only one kind of formal proof. Effective industrial use of
-formal verification requires that it be one weapon in a large arsenal of
validation methods.

While proof of correctness is unquestionably the most rigorous and
effective form of validation, there are contexts in which it is
inappropriate. Specification of correctness may be too difficult or
error-prone, in which case there may be weaker properties that it is more
appropriate to prove. A module may use implementation-dependent features,
making formal proof based on implementation-independent proof rules
impossible. Validation is meant to increase confidence in the suitability of
a module for its intended purpose; for some modules, greater confidence may
be obtained by running test cases than by proving fulfillment of some
postcondition. Some modules may not be critical enough to justify the cost
of rigorous validation.

MAVEN offers software engineers a continuum of more and less rigorous
validation methods. This continuum makes a wider variety of validation
methods available to a larger group and applicable to a greater number of
modules. MAVEN provides a unifying framework in which different validation
methods may be applied to the same program. By exposing software engineers
to more rigorous methods than those they may be familiar with, MAVEN

87

enaurages learning and promotes wider use of formal methods in the
situations where they are appropriate.

MAVEN includes components that are at and beyond the state of the art.
We do not propose tnat construction of MAVEN in its entirety should start
today. Rather, MAVEN can serve as framework for the specification, design,
and construction of individual tools, such as a verifier. If such tools are
viewed as eventual MAVEN components and if the MAVEN philosophy is kept in
mind when the tools are specified, then MAVEN can be assembled over a number
of years from independently developed components.

REFERENCES

1. Luckham, David C., von Henke, Friedrich W., Krieg-Brueckner, Bernd, and
Owe, Olaf. Anna, A Language for Annotating Ada Programs: Preliminary
Reference Manual. Technical Report 84-261, Stanford Computer Systems
Laboratory, July 1984

2. Doyle, Jon. Expert systems and the "myth" of symbolic reasoning. IEEE
Transactions on Software Engineering SE-11, No. 11 (November 1985), 1386-1390

3. Platek, Richard. Formal specification. Proceedings of the First IDA
Workshop on Formal Specification and Verification of Ada, Alexandria,
Virginia, March 1985, paper C

88

z

* z
0

z
LU

00

0. (N

0L 1 o".0 0
LU

0

0 5n

0

E E
0 W a

0 M
LU w

I-rn 0

LU.>w
00

z 0l .

0 0
-P

LU I-

90 0

0 41 Z 0
U 4 0 , 0

L16 0 0 0
LU LD Z I=1- 0

U IL 0 Wlu
Uo. 0 z IL

00

Z0~i C9 0'0"i> aoz coI ZwL o
I- ~Z .. ~.0 1 JI

~JU, I.. co >

LL6 U,.. A' W- z-
sU 0L

I. 4c 0
0w 4Z t*.II-

0Z0 0 g- L6Z'

z W.

0 2 u
p ~00

4c

4A 40

91

zz
z z

z 0 0 I
0

zU
zz

wj z
z 0 z

0 4 0
z 0

-P

> ~ 0

0 0 z
0 4A

0 zU 09

0 0
00 z

o9

*u

0
z In

z

5 0

Lu 0 4 I-
'U VU

L16 a &L_

zU z 00

o 2 2'93

LU aU

CI z 0 0
o2 z 0 -

z - I- zo- I..

wim -ur-i

w 4 0.a
0~ 4

0 0
Lu 4

z In-

ra 0

.j 00V

z ILo L

m 0 ma. *

*g An 00gri

94

0 U
0 I..od

z 9c In w
ca ww 0~ I

o. 0.
Z I-. I-

4c-
Ow Imx
9 >, a2 zi

-U~ L > ~~

LUU Z
0 .8 ml- -A

-z -' 0

*U 00
M Q LQ

0-I~0
LU

LU -U wz

* 0 z c
LU LLD ..A Z>.

.j L* a*

SL

0 Z z95

u Iz
IIz 0

IX a 3-- 0

~L z aU

a ca

4U I-

LL 3-z

L 4um 0 Z-

0 0L IL

Za I-. IL 1ja

4 IA Z w..

zI u 4c
0~~ 0A acx I

0 LU Zu
U 4g Z u

1. 0 LL 0 z

%g 00

96
0

*u

*i 0
wj 00

z uz* a U

z Z a)I

IL > u 0> m

0 aU Z az
UmL U) 0 L I-

0 0 X '-~ z
ix0 W- 01 w WU

Z z p P--

0 0L i U Z
z L -

z* 0- w E 2
00 z 0% L Um m

* zUL X Z

99 c
0 a

> 97

V

I- z
z 3-0 InLI o 0 0

- U 0

- wi
0 Uzz

LL 0
0 0 u L6

w ~U) 3-6 Z
0in ex

0 0 wL 0

0u 0

0 LUa

-J 0 :2 S
*Z i

98

00

LUU

z

0d w 0

Lu a ox

zz 0 z
0 z 0 0 L

z Ua wU u u
m a 73 z
U W 4c 0a >

* * 6 0 99

Z z M UU
I-- W

76 > 0

0 z En 4. I
dx .. Zn.. 0

0 CLZ3c
in 0' z Z Z z

CC - u 0(z 0 .

q0 Z0 z" Pu0

F- Luu En
zz -u. Zn m

u- > w 0~'
V"' * 00 Ens.

0m~ 0Vh

0En En inOJ E 0 IL

04 4ZU ZI VI

40 0 . 04
>0~ OwZ 4 wn

-- w yw z s - 0

$A00 LU Lu mw

0z

00

IL U)

0. - 0

44 4W .-- 0 I
-U) - l

0 0I Z. .L

(U 0 C9 OW 0 -IL
0~0 ZZ L6IL I C

0 Vo. 1--

0U O 0
0 1(3- 0u.W

Ci) wu1 CL -

ui010 OV z LI LU
Io ~ Z1 a1 0

II- V i1* -W 13 0-.

Q 0. 0 '

0~~~ x- >- 1 O * I

00 ZZ U)0 L 0
ag LU CLU U) O

4n In (0 >- .(
* 1(uL16 U)0 WVw.z

0 0 U) i -

IA. 9 0 u. 0 n L

0. 00

101

Z c1- 04 0n

~~ 4 m

g Z 4 0~ 3-4

CZ I--=0 4 04
o rZ 4 0 4t

0 LU LLD0 o I ~>0

mo 0. Z z
0.- IL 4 j gU
40 2> C 0 co

-~~~ CL 4 wu ,

0 0-
>4 OWI MA 0- 4

~~)I-wO~ uaLI I 0
61)3 - a Zl

>l 4g 0

- 0 II0o zz
>4 W6 &1

50
a LU 0 S

102 i

00

0

z a
4 0z Pt

4 0

I ~~I a 0

z I-

0 2o 'no

0 z -I 49 P
- ~in a

402o

00 0
ma >Oz D

00 inI% a

5l 4 Li

*>
0A M

00 0
I* U

103 u

0 0

go wIn

00

v ~C uu z- 0 ~m

less 0 8Z0 mO0W

w z Mm- In

4 = I4 Z t Z Z0 ;ZV

4 09 j s
00 xm 0 Z U 0UXu

0j u - 1. Z ... 4 In 4 k)
z01- UJ 1--WE

'B U OX1 W2 1 0 ~ 14Me
O 40 In In UW V 4x

M E Nz M E N It Lu n
to 0 U Z MEN

UI I ls -n 0 !t

o4 004>

Q uJ
z -I

4 0 wU
z zU
w. I- x a
z U Z i

-L Ix 0 0

0 0 990 n-.
zU 0 0>

Z -U

oW -0 < 3m

z00 4 - u,

cc - 0

I. u 4A

411 oo z z w

00 41 Z us zZ4 U, --ci'- 0

w ZQ 09 w i
000 0 ml)4

Z ZL 4
in 4A>0uk

(0 Z 0 z
49z00 L A

105

LU U

wj 4

Zm 010 0-L

2z 4 g n #

0L Z 0.0 Z
4A 0 u.i

ZU u, w 1-
uio zzL16

IL.LL Oo Z73 ~

> IU z >u V) 6-

LLn 000w

3) 0. 4nV) V

= x~ ul Z iaU
0 V) Z . lu-

) 0V w> wlL I
0. 0 0 w

a0 IL xU S

16-
0

0 0 U
Z6 0 ~

=a I g o0
o 0

zz

-I z c -

I--L

Z IL
LU 0.

z M #A
0 a 5

WU 0

z :E)

0 52

0j 0--
4 4 4>

> >

* 107

V) 0

D 1 >

uW e
0 9 LI C0

w I-. A -U

z i-1i z MA
0- 0 44g m wr~u a a,

(U) z 06=

()> m -' Z->

au fAw >10 #A
z am

LUZ W w4

- 4U 0
=a P zw

> co

108

*u

0
*z In

U) w

z

5 U 0
LI-

zw
#A0 0 z
0 0 0 1 us

-L a > LL Z

*L 0 LS 0

0 *109

LU>0

0~U0~ eL

00

0
WU 04

z 4

lu 6.1

4 0 04
0

z 0 0
o 0 40I

-A 0

La u. I4 WZ

00

110

*u

LUU

M 00

0~ z LL >

1- 0 0 L

oU LU u. z-

Lu w L. 0IO
u 0

Cl) 0 0=

I0 LL Zwu I40 w

w9 Z -0
w 0 NJ .

0 In n

00

> IL i~0

0 0 m

V)l Z ZUL

0 n
(fl'-m.

-' 4Zu W
ILU IW In4g4

0u W9 ZZ w

z 0 OZ UL 0u0 ZL
IZ 0' 4 u~ 0 W

4U L1 .
IL 0 go 9 z

OX U) !2 0.

w 0L Z0 .

49 LU

*AW iu 0 0

112 01 LU)a

0

aU z0 0

w Z wu
LUw z 0oz

0 C - >- o

z wwo 0.U 0=a

> ~ ~ ~ ~ ~ u IL0M.0 u

wo 00 0 0
1m4 0 ZU)U

mi 3 2 .1.>>

n 0 z> oU 00, a

UA ~~ 00 -.- l u

Zu 0uI- W 0
AU -

VU, zz, su
4t, I% In

.jW~ 0 .- Z 0 0~
Z0 U ZZ Z..

29~ z

* 0 0AQ

n u 4 =I L LU I 113

go m9Z 0u
00

ZI I-I

o20 9 nZ V)
I-Z 4

W-0

z

0, 0

0 z0~ g3 &U 0'

F- PiuIU 0 04U

S 04 0.'.. in 1 11)
Xa o m- wj = 0 g'

LU ~ ~ 01- m0z4o

LL I L.I 0 L

* * 2 . 0

* * U Siu

11 Z

0

LU U

Z 4

wLU
w 0

LU WU
z4

-I 0 0)

0) 0 1- 0 G
P Lo M

a >' z

*U 0 LLD 0

* 115

wS

LU tU
-L 0
1 vi.

LL Io0 z
'U w

0 M.
z 0 Z u

U wa z
z a w

(U)U

MA-L
un

z

1160

0M

*z

0 z z W

0.0 0

z) 99 99

OS

z 060

ZL 44

I-. a) 0
*U Z9 1"- ILW

LuL 6
z -l

00Lu~ au W O

0 z .
1.0UU0

UU 0 m

w. 0 Zu

* 117

00

0>

0 Z 1

L16 z to
> UUoz 0

> 0

L'U

0n cc 09

o o > U0

1- 0U

LuZ I- z.'

ZO0

-Z 0 .
C;h LL. Wu.w
lu >; :

L 0 z> >
Ow zh 0 04>0 >

* 0 00

1180

wI---

004

Z N(IZ

-J I- IxZ

LuU
o0 MI

!2 q.nd

z I- 0
ZZ4

w 0 M0 >

00
a. LU z L6L

0zZ
w ta

a X 2 a.P
ma

T

-U s%~u

* 0 0 ILS

119

L60

0>

Z u 0 U.
0 3-0 0

In'-I

40 wE mi U

A U)I IL
0i !2 4 U

in) Z :E W~ cc
00LU 1w 4l 0

M- 4 Z I

us2 0

LU Z- WnE 0Z
x- 0 I 0 EM ;: E

- ~ 00 c 4z 14 0V-A04 A OV Z Qz -L1

* 0 j

12 0A

*z

0 Wi U

IL) oz)

1--0 0 -

-
U.

I% -U Z

o 00u

miI) I- 4c p

z 0 wA U LW
zU 0z lJ.

Z 00 z- Z"

0 0 &
u 1MW 0 4n. a

1.- 4Z Z0 t) z
0 22 > .a

in Z

-ZZ

og0 0

*
121

z 0
z4

wU 0

z 0- -

2 z 0 0 0
0 1 -

m- a > z
us z 0 uq

0 0

122

00

0 w 00

Oj 0 *u Pl
0 01 w U

o. 0 2L
Z 4 0

z0 (D
N6 0

z 0 x Z
z 40 > 0 z

l o a.o
-> ma- I o

(IL xa z

m . 0L 0 2 5

U0 0 Li Z

z b- 2Z
~~~ o ~~0

IL 0 0 0Lc

0
* IA

* 123



0

o C0
z 0 3
Ow L0 zw

4 40 4

I 0 wwx ) L

WU 03-

01- WW

00 Va.L-
LLI In

* * 0

0 0 RI- I-

z 0h a~

ZW Z

0 0L 0

124 F)LL



Z uj 0

I- 0 0k U z U

cc I- . A

Lu2 0U61 l., -

'V. 
a P- 2IoL.zI

I - z Z 4 U

*i 0 0 -
a.

LUL 0 Ma zMU

V) =L IL I - oM

Lu 'z 0 s V)09
ua U C1 4 :

0 u ) Zm-z

w 0 0
00 0

EM P )0 w zmz r

o be
0~ L0 ggLL

~ 0 00 4  
I

* 
I-

2 
0

o Su I- a 0 0

*) 0 U)a

ui ci 0 U)4125



Software Hazard Analysis and Safety Verification using
Fault Trees

Nancy G. Levesont

Information and Computer Science
University of California, Irvine

Irvine, California 92717
(714) 856-5517

e-mail: nancyDics.uci.edu

Abstract

Contractors for embedded systems are starting to include requirements for
software hazard analysis and verification of software safety in their contracts.
This paper describes the problem and one possible approach to it - Software
Fault Tree Analysis.

Introduction

A system or subsystem may be described as safety-critical if a run-time
failure can result in death, injury, loss of equipment or property, or environmen-
tal harm. In safety-critical systems it is not unusual to have reliability require-

ments in the range of 10- 5 to 10- Y probability of failure over a short period of
time. Unfortunately, current software engineering technology does not guarantee
that such reliabilities can be achieved for software (or, for that matter, even
measured). In fact, available evidence indicates that current software reliability
figures are, at best, orders of magnitude less than required [3]. Software engineer-
ing techniques which attempt to prevent, eliminate, or tolerate software faults
may increase the time between failures, but do not provide assurance that catas-
trophic failures will not occur.

What can be done? One option is not to build these systems or not to use
computers to control them. For the most part, however, this option is unrealistic
-- there are too many good reasons why computers should be used and too few
alternatives. Another option is to consider reliability in a less absolute sense.
There are many types of failures possible in any complex system, with conse-
quences varying from minor annoyance up to death or injury. It seems reasonable
to focus on the failures that have the most drastic consequences. Even if all
failures cannot be prevented, it may be possible to ensure that the failures that
do occur are of minor consequence or that even if a potentially serious failure

TThis work has been partially supported by NSF Grant No. DCR-8406532 and by Micro
Grants cofunded by the University of California, Hughes Aircraft Co., and TRW.

127



-2-

does occur, the system will "fail safe" (i.e., fail in a manner which will not have
catastrophic or serious results).

This approach is useful under the following circumstances: (1) not all
failures are of equal consequences and (2) a relatively small percentage of failures
lead to catastrophic results. These conditions seem to be true for most realistic
safety-critical systems. Under these circumstances, it is possible to augment trad-
itional reliability techniques that attempt to eliminate all failures with techniques
that concentrate on the high-cost failures. These new techniques often involve a
"backward" approach that starts with determining what are the unacceptable or
high-cost failures and then ensures that these particular failures do not occur or
at least minimizes the probability of their occurrence. This approach has been
used on defense, aerospace, and various types of industrial systems.

Most safety-critical system purchasers are becoming concerned with software
risk and are incorporating requirements for software safety analysis and
verification in their contracts. In many countries, a formal validation and
demonstration of the safety of the computers controlling safety-critical processes
is required by an official licensing authority. In the U.S., DoD standards for
building safety-critical systems either already include, or are being updated to
include, software-related requirements. For example, a general safety st,.ndard
(MIL-STD-882B) includes tasks for Software Hazard Analysis and Verification of
Safety (including software). An Air Force standard for missile and weapon sys-
tems (MIL-STD-1574A) requires a Software Safety Analysis and Integrated
Software Safety Analysis (which includes the analysis of the interfaces of the
software to the rest of the system, i.e. the assembled system). And the U.S.
Navy has a draft standard for nuclear weapon systems (MIL-STD-SNS) that
requires Software Nuclear Safety Analysis. All of these analyses are not meant to
substitute for regular verification and validation, but instead involve special
analysis procedures to verify that the software is safe.

It is important to stress that these are system problems. When computers
are used as components of larger systems, considering the computer software in
isolation will be of limited usefulness. Many (if not most) serious accidents are
caused by complex, unplanned (and unfortunate) interactions between com-
ponents of the system and by multiple failures. That is, most accidents originate
in subsystem interfaces [4,5]. Software failures and software-induced system
failures may be caused by undetected hardware errors such as transient faults
causing mutilation of data, security violations, human mistakes during operation
and maintenance, errors in underlying or supporting software systems, or inter-
facing problems with other components of the system including timing errors and
specification errors. Therefore, techniques used to build software for embedded
systems, especially with respect to analysis and verification, are going to have to
consider the system as a whole (especially the interactions between the com-
ponents of the system or subsystem) and not just the software in isolation.

128



-3-

In fact, after studying actual accidents where computers were involved,
safety engineers have concluded that inadequate design foresight and specification
errors (i.e., fundamental misunderstanding about the desired operation of the
software) are the greatest cause of software safety problems [4,6]. These prob-
lems arise from many possible causes including the difficulty of the problem int-
rinsically, a lack of emphasis on it in software engineering research (which has
tended to concentrate on avoiding or removing implementation faults), and a cer-
tain cubbyhole attitude that has led computer scientists to concentrate on the
computer aspects of the system and engineers to concentrate on the physical and
mechanical parts of the system with few people dealing with the interaction
between the two [6]. Many hardware-oriented system engineers do not under-
stand software due to the newness of software engineering and the significant
differences between software and hardware. The same is true, only vice versa, for
software engineers. This has led to system engineers considering the computer as
a black box [6,7] while the software engineer has treated the computer as merely
a stimulus-response system. This lack of communication has been blamed for
several accidents.

One such incident involved a chemical reactor [7]. The programmers were
told that if a fault occurred in the plant, they were to leave all controlled vari-
ables as they were and to sound an alarm. One day, the computer received a sig-
nal telling it that there was a low oil level in a gearbox (see figure 1). The com-
puter reacted as the requirements specified: it sounded an alarm and left the
ccntrols as they were. By coincidence, a catalyst had just been added to the
reactor and the computer had just started to increase the cooling-water flow to
the reflux condenser. The flow was therefore kept at a low value. The reactor
overheated, the relief valve lifted, and the contents of the reactor were discharged
into the atmosphere. The operators responded to the alarm by looking for the
cause of the low oil level. They established that the level was normal and that
the low-level signal was false but, by this time, the reactor had overheated.

An obvious conclusion from the above is that system-level methods and
viewpoints are necessary. Note that the software itself is not "unsafe." Only the
hardware that it controls can do damage. Treating the computer as a stimulus-
response system allows verifying only that the computer software itself is con-
sistent or safe; there is no way to verify system correctness or system safety. To
do the latter, it must be possible to verify the correctness of the relationship
between the input and the system behavior (not just the computer output). Boe-
bert 11] has argued that verification systems that prove the correspondence of
source code to concrete specifications are only fragments of verification systems.
They do not go high enough (to an inspectable statement of system behavior),
and they do not go low enough (to the object code).

Murphy is an experimental methodology being developed to deal with these
problems. The goal it to provide procedures and an integrated tool set for build-
ing safety-critical real-time software. In general, the following questions are being

129



I CONDEXSER

I ATALysi

I D "
WAI

I0

Ilu I IIuo m ~ldblhnwo
I I 0

I I I

I I



-5-

considered:

0 Software Hazard Analysis and Requirements Specification: What kinds of
system models and analysis tools are most useful? How can software
requirements be derived from these system models? How can the models
and requirements be analyzed to determine important reliability and safety
properties?

* Verification and Validation: How can safety properties be identified,
specified, and formally verified? What techniques appear the most promis-
ing? How can they be implemented so that they can be used in industrial
environments and not just in university research labs?

* Assessment of Safety- How can the safety of software be accurately measured
and assessed? Is this possible'? Is this feasible?

* Software Design and Run-Time Environments: What techniques and
environments are most appropriate for safety-critical software? How can the
software detect unsafe states during execution? What types of self-
monitoring, external monitoring, fault-tolerance, fail-safe, and other software
design techniques can be used to aid in the design of the software especially
with regard to handling run-time fault detection and recovery?

Murphy is currently far from a complete methodology. Since it is still in the
formative stages, much of the work has involved examining alternative
approaches. This paper describes some of the work in software hazard analysis
and verification of safety. More general discussion of software safety can be found
in [8,10], and a more complete description of Murphy appears in [9].

Software Hazard Analysis

A mishap or accident is defined as an unplanned event or series of events
that results in death, injury, occupational illness, damage to or loss of equipment
or property, or environmental harm. Mishaps result from hazards or states of the
system that when combined with certain environmental conditions can lead to a
mishap. The first step in any safety program is to identify hazards and categor-
ize them with respect to risk where risk is a function of (1) the probability of the
hazardous state occurring, (2) the probability of the hazard leading to a mishap,
and (3) the perceived severity of the worst potential mishap that could result
from the hazard. This initial identification of hazards is called a Preliminary
Hazard Analysis (PHA). Potential hazards considered involve normal operating

*0 modes, maintenance modes, system failure modes, failures or unusual incidents in
the environment, and errors in human performance.

131



-6- 0

Once the System Preliminary Hazard Analysis is completed, Software
Hazard Analysis (SHA) can begin. Software hazards include such things as

* failing to provide a required function, i.e., the function is never executed or
no answer is produced,

* performing a function that is not required, i.e., getting the wrong answer or
issuing the wrong instruction or doing the right thing but under inappropri-
ate conditions (for example, activating an actuator inadvertently, too early,
too late, or failing to cease an operation at a prescribed time),

" timing or sequencing problems, e.g. failing to ensure that two things happen
at the same time, at different times, or in a particular order,

* failing to recognize a hazardous condition requiring corrective action,

* producing the wrong response to a hazardous condition. 0

Once the software hazards have been identified, the next step in SHA is to
work backward from the specific hazards for the software under consideration and
to locate software faults or paths through the software which could cause the
unwanted hazardous conditions or to verify that such paths do not exist. The
verification should include the software interfaces including system interfaces and
computer hardware interfaces (e.g., hardware failures which could cause the
software and hence the system to operate in a hazardous manner). Failures need
to be considered along with normal operation.

The final step in SHA is to use the results of the analysis to guide further
design and to guide placement and content of run-time checks and software fault
tolerance and fail-safe procedures. For example, it may be possible to use the
information obtained in the analysis to help write acceptance tests for the
software and to determine conditions under which fail-safe procedures should be
initiated.

We have been studying ways to accomplish software hazard analysis using
Time Petri Nets (141 and Fault Tree Analysis (FTA) [121. This paper will con-
centrate on describing the FTA procedures.

Software Fault Tree Analysis (SFTA)

Fault Tree Analysis (FTA) [16] is an analytical technique used in the safety
analysis of electromechanical systems. An undesired system state is specified,
and the system is then analyzed in the context of its environment and operation
to find credible sequences of events that can lead to the undesired state. The
fault tree is a graphic model of various parallel and sequential combinations of
faults that can result in the occurrence of the predefined undesired event. A fault
tree thus depicts the logical interrelationships of basic events that lead to the
hazardous event.

The analysis process starts with the categorized list of system hazards that
have been identified by the PHA. A separate fault tree must be constructed for

132



-7-

each hazardous event. The basic procedure is to assume that the hazard has
occurred and then to work backward to determine its set of possible causes. The
root of the fault tree is the hazardous event to be analyzed called the loss event.
Necessary preconditions are described at the next level of the tree with either an
AND or an OR relationship. Each subnode is expanded in a similar fashion nintil
all 'eave. describe evcnts of calculable probability or are unable to be analyzed
for some reason. Figure 2 shows part of a fault tree for a hospital patient moni-
toring system.

Once the fault tree has been built down to the software interface (as in
figure 2), the high level requirements for software safety have been delineated in
terms of software faults and failures that could adversely affect the safety of the
system. As the development of the software proceeds, fault tree analysis can be

* performed on the design ill] and finally the actual code [12].

When considering the implemented system, software fault tree analysis pro-
cedures can be used to work backward from the critical control faults determined
by the top levels of the fault tree through the program to verify whether the pro-
gram can cause the top-level event or mishap. The basic technique used is the

* same backward reasoning (weakest precondition) approach that has been used in
formal axiomatic verification [2], but applied slightly differently than is common
in "proofs of correctness."

The set of states or results of a program can be divided into two sets -

correct and incorrect. Formal proofs of correctness attempt to verify that given a
precondition that is true for the state before the program begins to execute, then
the program halts and a postcondition (representing the desired result) is true.
That is, the program results in correct states. For continuous, purposely non-
halting (cyclic) programs, intermediate states involving output may need to be
considered. The basic goal of safety verification is more limited. We will assume
that, by definition, the correct states are safe (i.e., that the designers did not
intend for the system to have mishaps). The incorrect states can then be divided
into two sets - those that are considered safe and those that are considered
unsafe. Software Fault Tree Analysis attempts to verify that the program will
never allow an unsafe state to be reached (although it says nothing about
incorrect but safe states).

Since the goal in safety verification is to prove that something will not hap-
pen, it is useful to use proof by contradiction. That is, it is assumed that the
software has produced an unsafe control action, and it is shown that this could

a not happen since it leads to a logical contradiction. Although a proof of correct-
ness should theoretically be able to show that software is safe, it is often imprac-
tical to accomplish this because of the sheer magnitude of the proof effort
involved and because of the difficulty of completely specifying correct behavior.
In the few SFTA proofs that have been performed, the proof appears to involve
much less work than a proof of correctness (especially since the proof procedure
can stop as soon as a contradiction is reached on a software path). Also, it is

133



wrong treatment

admn;tered

| vital si-gns vital signs exceed
erroneously reporte critical limits but|
Sas exceeding limits[ riot corrected in timt

trequency of computer fails nurse does not
req urement to raie alarm sensor failure respond to alarmtoo low

computer fails to human error] Ee ian nurse fals to input

Iread within required] (doctor sets| faur vitals manually or
S time limits wrong) failr inputs incrrectly

Figure 2: Top Levels of Patient Monitoring System Fault Tree

134



0-9-

often easier to specify safety than complete correctness, especially since the
requirements may be actually mandated by law or government authority as with
nuclear weapon safety requirements in the U.S. Like correctness proofs, the

0 analysis may be partially automated, but highly skilled human help is required.

Software fault tree analysis starts at the software interface of the system
fault tree and works back through the logic of the code. Constructs for some
structured programming language statements are shown in Figures 3 through 8.
In each, it is assumed that the statement caused the critical event. Then the tree
is constructed considering how this might occur. An example of the procedure is
shown in Figures 9 and 10. An Ada program segment is shown which iteratively
solves a fixed point equation. One possible top-level (loss event) for the segment
is that no answer is produced in the required time period (and the answer is criti-
cal at this point). This loss event corresponds to the while loop executing too
long (shown in figure XX as "Max" iterations).

In general, the software fault tree has one or both of the following patterns:

1) A contradiction is found as shown in the left branch of figure XX. The
building of the software fault tree (at least for this path) can stop at this
point since the logic of the software cannot cause the event. This example
does not deal with the problem of failures in the underlying implementation
of the software, but this is possible. There is, of course, a practical limit to
how much analysis can and need be done depending on individual factors
associated with each project. It is always possible to insert assertions in the
code to attempt to catch critical implementation errors at run-time. This is
especially desirable if run-time software-initiated or software-controlled fail-
safe procedures are possible. Note that the software fault tree provides the
information necessary to determine which assertions and run-time checks are
the most critical and where they should be placed. Since checks at run-time
are expensive in terms of time and other resources, this information is
extremely useful.

* 2) The fault tree runs through the code and out to the controlled system or its
environment. In the example of Figure 10, the fault tree shows one possible
path to the loss event, and changes are necessary to eliminate the hazard.
One appropriate action in this case may be to use run-time assertions to
detect such conditions and to simply reject incorrect input or to initiate

* recovery techniques. Another possibility is to add redundant hardware, e.g.
sensors, to eliminate incorrect input before it occurs.

Fault trees can also be applied at the assembly language level to identify
* computer hardware fault modes (such as erroneous bits in the program counter,

registers, or memory) that will cause the software to act in an undesired manner.

135
0



procedure call
caused the event

parameter values procedure failing
caused the event Ecaused the event I

Figure 3 : Fault Tree for a Procedure Call

event caused by
if-then-else

then part else part

caused event caused event

and and

cond. true then-part cond. false else-part
prior to IF caused event prior to IF caused event

Figure 4 : Fault Tree for an If-Then-Else Statement 9

136



event caused by
while statement

0 or

st statement
not executed executed N times

event prior cond. false cond. tre Nth iteration
to while before while before while causes event

Figure 5: Fault Tree for a While Statement

event caused by

case statement

o r

when clause 1 when clause n else part
caused event caused event caused event

and and and

cond. clause n no cond.
tru case it true caused it true caused it

Figure 6: Fault Tree for a Case Statement

137



avow en0

by Ulm

caw& emd0

FIg. 7: Fault Tree for a Select Statement.

ofTI. T2 ot A

as 4

Teki I u d Ua =&

Fig. 8;,Fault Tree Construct for a Rendezvous.

138



get (X, Epa);

0 Err: Eps;
I: =0;

while Err > Eps loop

0 NetvX: ()
Err: tzbj(X - NewX);
I: =1+ 1;
X := NeuX;

* end loop

Figure 9: Example of Ada Code

139



no answer
within

allotted time

l0
I = Max

while loop
caused I >_ Max S

F- F

1I:Max Cond~as Err > Eps abefor loop before lop I <IMax
before loop Err =1 F'-(X) - F'(X)

O>Maz

I Fm"--(X) - Fm--(X) 1 Eps

contradiction Err > Eps&I < Max

F -(X) -F (X) 12 Eps

Eps > Ep.&O < Max

Figure l0: Fault Tree for Code in Preceding Figure

i14o



-15-

McIntee [151 has used this process to examine the effect of single bit failures on a
software fuze. The procedure identified credible hardware failures that could
result in the inadvertent early arming of the weapon. This information was used
to redesign the software so that the failure could be detected and a "DUD" (fail-
safe) routine called.

Experimental evidence of the practicality of SFTA is lacking. Examples of
two small systems (approximately 1000 lines of code) can be found in the litera-
ture [12,151. There is no information available on how large a system can be
analyzed with a realistic amount of effort and time. But even if the software is
so large that complete generation of the software trees is not possible, partial
trees may still be useful. For example, partial analysis may still find faults.
Furthermore, partially complete software fault trees may be used to identify criti-
cal modules and critical functions which can then be augmented with software
fault tolerance procedures. They may aiso be used to determine appropriate run-
time acceptance and safety tests [13].

In summary, software fault tree analysis can be used to determine software
safety requirements, to detect software logic errors, to identify multiple failure
sequences involving different parts of the system (hardware, human, and
software) that can lead to hazards, and to guide in the selection of critical run-
time checks. It can also be used to guide testing. The interfaces of the software
parts of the fault tree can be examined to determine appropriate test input data
and appropriate simulation states and events.

Summary

Safety is an important new application area for formal verification. Analyses
such as software hazard analysis are now being required for safety-critical
software, but the best way to accomplish this analysis is still unknown. This
paper has briefly described one possibility - Software Fault Tree Analysis.
There is currently work underway to extend the analysis to other Ada program-
ming language constructs and to build an automated tool to aid in the analysis.

References

[1] Boebert, W.E. "Formal verification of embedded software," A CM Software
Engineering Notes, vol. 5, no. 3, July 1980, pp. 41-42.

[2] Dijkstra, E. A Discipline of Programming, New York: Prentice Hall, 1976.

[3] Dunham, J.R. and J.C. Knight (editors). "Production of reliable flight-
crucial software," Proc. of Validation Methods Research for Fault-Tolerant
Avionics and Control Systems Sub- Working-Group Meeting, Research

141



- 16-

Triangle Park, North Carolina, Nov. 2-4, 1981, NASA Conference Publica-
tion 2222.

[4] Ericson, C.A. "Software and system safety," Proc. 5th Int. System Safety
Conf., Denver, 1981, vol. 1, part 1, pp. III-B-1 to III-B-11.

[5] Frola, F.R. and Miller, C.O. System Safety in Aircraft Management, Logis-
tics Management Institute, Washington D.C., January 1984.

[6] Griggs, J.G. "A method of software safety analysis," Proc. 5th Int. System
Safety Conf., vol. 1, part 1, Denver, 1981, pp. III-D-1 to III-D-18.

[71 Kletz, T. "Human problems with computer control," Hazard Prevention R
(The Journal of the System Safety Society), March-April 1983, pp. 24-26.

[8] Leveson, N.G. "Software Safety: Why, What, and How," Technical Report
86-04, ICS Dept., University of California, Irvine, 1986 (submitted for publi-
cation).

[9] Leveson, N.G. "Building safe software," Proc. Compass '86, July 1986, (also
available as Technical Report 86-14, ICS Dept, University of California,
Irvine, 1986).

[10] Leveson, N.G. "An Outline of a Program to Enhance Software Safety,"
Proc. Safecomp '86, October 1986.

[11] Leveson, N.G. "The Use of Fault Trees in Software Development," in
preparation.

[12] Leveson, N.G. and Harvey, P.R. "Analyzing software safety," IEEE Trans.
on Software Engineering, SE-9, no. 5, Sept. 1983, pp. 569-579.

[13] Leveson, N.G. and Shimeall, T. "Safety assertions for process control sys-
tems," Proc. 13th Int. Conference on Fault Tolerant Computing, Milan,
Italy, 1983.

[14] Leveson, N.G. and Stolzy, J.L. "Safety analysis using Petri nets," IEEE
Trans. on Software Engineering, in press.

[15] McIntee, J.W. Fault Tree Technique as Applied to Software (SOFT
TREE), BMO/AWS, Norton Air Force Base, CA. 92409.

142



* -17-

[161 Vesely, W.E., F.F. Goldberg, N.H. Roberts, and D.F. Haasl. Fault Tree
Handbook, NUREG-0492, U.S. Nuclear Regulatory Commnission, Jan. 1981.

14



VERIFICATION OF ADA PROGRAMS FOR SAFETY

Prof. Nancy Leveson
S Information and Computer Science

University of California Irvine

145



Real-Time Safety-Critical Systems

When computers are used to control complex, time-critical
mechanical devices or physical processes such as:

Air Traffic
Nuclear Fission
Hospital Patient Monitoring
Defense and Aerospace Systems

where a run-time error or failure can result in death, injury, loss of
property, environmental harm.

0

1460



+ +

+ .... ..

IICa t l s.. . . . . CondenserC o l n

I+ + +I

I + +I

+ I+ Reactorf RefluxI

-- - - - - - - - - - - - - - - - - - - C m u er

14



I0

Problems:

* Cannot achieve needed reliability with current techniques

0 Orders of magnitude less than required 0

e Most accidents can be traced back to inadequate design
foresight and requirements specification -- Most software
engineering techniques focus on implementation of
requirements

148



What can be done?

" Don't build these systems or don't use computers to con-
trol them

" Take a "system's" viewpoint

interface between computer and controlled system

interface between software and computer hardware

" Take a less "absolute" view of reliability

not all failures are of equal cost

minimize risk

149



Safety Approach to Software Development

" all failures are not created equal

" work backward from highest cost failures

" put effort into eliminating or preparing for high-cost
failures.

150



* Implications and Challenges for Software Engineering

* Requirements for software safety analysis and verification being
included in contracts and by government licensing agencies.

0 New standards for safety-critical software.

• National and international working groups

0 Safety involves multiple areas of traditional software research
along with safety engineering.

reliability

security

151



30 March 17

TASK 212

SOFTWARE HAZARD ANALYSIS

212.1 Purpose. The purpose of Task 212 is to perform and document a software
hazard analysis to identify hazardous conditions incident to safety critical
operator information and command and control functions identified by the PHA,
SSHA, SHA, or other efforts.

212.2 Task Description. The contractor shall perform and document software
hazard analysis on safety critical software-controlled functions to identify
software errors/paths which could cause unwanted hazardous conditions.

212.2.1 Preliminary Software Hazard Analysis. These efforts shall examine
software design to identify unsafe inadvertent command/failure-to-command modes
for resolution. This effort shall be accomplished by tracing safety critical
operator information and commands through flow charts, storage allocation
charts, software and hardware specifications, and other applicable
documentation.

212.2.2 Follow-on Software Hazard Analysis. These efforts shall examine
software and its system interfaces for events, faults, and occurrences such as
timing which could cause or contribute to undesired events affecting safety.
This effort shall be accomplished by tracing safety critical operator
information and commands through source/object code through system simulation
and through other applicable documentation. Safety critical programs/modules
shall be analyzed for sensitivity to software or hardware failures (bit
transformation, register perversion, interface failures, etc.) which could
cause the system to operate in a hazardous manner.

212.3 Details to be Specified by the MA (Reference 1.3.2.1).

212.3.1 Details to be specified in the SOW shall include the following, as
appl icabl e:

(R) a. Imposition of Tasks 100 and 212.

(R) b. Definition of safety critical.

c. Format, content, and delivery schedule of any data required.

d. Degree of fault-tolerance for Category I and 11 hazards.

TASK 212
30 March 1984

212-1

152



Software Safetr. involves ensuring that the software will execute
within a system context without resulting in unacceptable risk.

Risk is defined in terms of hazards -- states of the system that when
combined with certain environmental conditions could lead to a
mishap.

Risk = f ( Pr [hazard occurs], Pr [hazard leads to mishap],
Severity of worst potential mishap)

Safety critical software: software which can directly or indirectly
cause or allow a hazardous system state to exist.

153



MURPHY
0

Techniques and tools for enhancing safety in real-time systems

0 Safety Analysis and Requirements Tools

Fault Tree Analysis
Timed Petri Net Analysis techniques

* Verification and Assessment Tools

Software Fault Tree Analysis
Formal Verification
Measurement of Safety

0 Run-Time Safety Techniques and Environments

Safety Assertions
Safety Monitor
Software Fault Tolerance 0

154 0



Sazard - a set of conditions within a state from which there is a path
to a mishap.

Goal in designing a safety-critical system.

* eliminate hazards from the design

* if not possible, then minimize risk by altering design so that there
is a very low probability of hazard occurring.

Safety Analysis:

1) ensure that if design is correctly implemented and no failures
occur, operation of system will not result in a mishap.

2) eliminate or minimize risk of faults or failures leading to a mishap
by using fault-tolerance or fail-safe procedures.

155



0

SOFTWARE SAFETY ANALYSIS PROCEDURES

(1) Determine System Hazards (PHA)

(2) Use PHA to determine software hazards
(software safety requirements)

* failure to perform a required function

* performing a function not required

* timing or sequencing problems

• failing to recognize a hazardous condition requiring corrective
action

" producing wrong response to a hazardous condition

156



(3) Assume software safety failure and work backwards to determine
set of possible causes (if any) or show that cannot be caused by
logic of software

(4) Use results of analysis to:

0 Guide further design

0 Pinpoint critical functions and test cases

0 Guide placement and content of run-tine checks

* Determine conditions under which fail-safe procedures should
• be initiated

157



Proof of." correctness"

" verify that given a precondition which is true for the state before
the program executes, then the program w.11 halt and a given
postcondition will be true of the state once the program halts.
That is, programs result in all and only correct states.

Proof of "safety'

* Divide incorrect states into safe and unsafe and verify that pro-
gram will never allow an unsafe state to be reached (although 0

says nothing about an incorrect but safe state).

* May be less work and easier to specify.

1

I /

158



Fault Tree Analysis

. A graphic model of the various parallel and sequential combina-
tions of faults (or system states) that will result in the occurrence
of a predefined undesired event.

Events can involve hardware failures, human mistakes, software
design faults, computer hardware failures, etc.

* Start with list of system hazards (PHA). Assume hazard has
occurred, and work backward to determine set of possible causes.
Preconditions described with either AND or OR relationships.

159



erononeoutmly

reported as n

~~ea~uremenF failuree fail t imerson

0 
vi

computer fails human error- mechanical nurse fails
to read withi (doctor sets failure to input

requied tma wong)vitals manually

* incorrectly

Figure I. Top Levels of Patient Monitoring
System Fault Tree

160



S

(1) A:= F(Y); (2) V := X - 5.0; (3) if A > B then Subl; end if;

Figure 8: Sample Assignment Statements

Subl called

(1) and (2)
caused A > B

(2) caused
A> X-5.0

F(1) caused

F(Y) > X - 5.0

Figure 9: Fault Tree for Assignment Statements

1

161



.4.

event caused by
if-then-else

then part else part
caused event caused event

an an

cond. true then-part cond. false else-part

prior to IF caused event prior to IF caused event

Fault Troe for an Ir-Then-Else Statement
Figure Is

event caused by
while statement

or

statement statement
not executed executed N times

an and

event prior cond. flecond. biac Nth iteration
to while prior to hie prior to while causes event

Fault Tree for a While Statemeut
Figure lb

162



get (X, Eps);

0 Err : Eps;
I: 0;

while Err > Eps loop

0 NewX: ()
Err: abs(X - NewX);
I: 1 + 1;
X := NewX;

0 end loop

Figure 14: Example of Ada Code

0

0/

0

0

0 163



no answer
within

allotted time

I = Max

1
while loop

caused I > Max

or

while executed
while not N times
executed

Er 2! EsI a
I > Max Cond False

before loop Err =1 F-(X - F'(X)

O>Max T

I g""-'(X) - F"M,(X) I_ Eps

contradiction Err > Eps&I < Max

I Fr -'(X) - FMG(X) 1 Epa

Ep > Eps&O < Max

Figure 15: Fault Tree for Code in Preceding Figure

57

164
do



Software fault tree has two possible patterns:

(1) A contradiction is found.

(2) Fault tree runs through code and out to controlled system or its
environment.

165



Eigure.7. Firewbeel Spin Control - Software Opens gas Value
file lo~ation: 7
initial fault: FireWheel spins too fast

FIRE WHEEL
spins tco fast

and

Ig on at 

booms deploy

and 
(r /

spin at gas on motor failure s/w motors off
max grateo jf

r or

valuestuc 9/w valu ope

monito~Kin totorin
caletdL~eiod>gabot Hoo > astp E ot al

period too high length too low

166



interrupts
disabled

indefinitely

Lhile statementin VER fails

[WDLOST> DNCTR
* alwaysj

[DNAX-
(SUNP+12;7l 1

SUNP <64

sun interrupt sun interrupt

sun pulse 1sun pulse andreet JDCSS JWDCSS < 64

tun
pulse

sunS nrmetd

pulse < 6 im~es
* 2

less than 64
mseconds pass

~*Fiu~e9b. Boom Length Too Low (continued)

5 167



Other issues:

* Concurrency

" Timing

* Computer Hardware Failures

168



S -11-

Event caused
* by select

0Ci true & caused by
Ri ready else clause

an an

i constraintsbefore causedi on clauses else clausebeor auedtnot satisfied caused it

Fault Tree for a Select Statement
Figure 5

rendezvous
of TI, T2 at A
caused event

* an

task 1Hat task2 at one of tasks
accept A Taski.A caused event

or

taskI caus task2 caus
event event

Fault Tree Construct for a Rendezvous
Figure 6

169



-13-

Task TI Task T2

(1) begin (4) begin

I 1*
(2) T2.P; (5) get (Y);

(3) V (6)VY;

()Acpt P;

Ti's reference to V occurs
before V is defined in T2

Sti=t (3) excted
before stit (6)

rendezvous of T2
with T2.P (2) occurs

before Stint (6)

a 2Pbefore s~t (6) is defined in T2

contradiction

Figure 7

170



rezvousP

task B not task A not
at Accpt P at .

exssaccept PJ amccept PI

Figure 8

* 171



A proof rule for ADA

Ryan Stansifer

Department of Computer Science

Purdue University

West Lafayette, Indiana 47907

Telephone: (317) 494-7281

ryan@Purdue.edu

Abstract: We give a proof rule for a multiple-level exit construct not unlike the loop-

exit statement in the ADA* programming language. We give a novel, yet simple, semantics

for the loop-exit with which we can prove that the rule is both sound and (relatively)

complete in the logic of Hoare triples. Hence, we can be satisfied that the proof rule

is sufficient to prove all true Hoare triples using the multiple-level exit statement and is

suitable for inclusion in a formal verification system.

Key words: Hoare logics, program verification, ADA programming language, deno-

tational semantics.
* ADA is a registered trademark of the U.S. Government, ADA Joint Program Office.

173



A proof rule for ADA

Introduction. The programming language ADA has a general loop statement en- 0

compassing three different forms (or iteration schemes as they are called in section 5.5 of

the reference manual). One form subsumes the other two, that is, the other forms can be

derived from it. It is this most general case that we consider here. The syntax of this loop 0

construct looks like:

I : loop S end loop 1;

where I is the label of the loop. Execution of the loop statement proceeds by repeatedly

,vecuting the statements in S until a statement of the following form is encountered:

exit I when B;

When the boolean condition B evaluates to true, the execution of the loop labeled 1 is •

ended and the next statement in sequence after the loop is executed. If the condition is

false, execution of the loop continues with the next statement in sequence after the exit

statement. This exit statement can be encountered while nested inside of more than one 0

loop. This is the cause of much travail in the denotational description of such constructs.

In this paper we give a denotational semantics for a simple language containing an

ADA-like loop-exit construct. For this language we present an axiom system for deriving 0

assertions about the correctness of programs. From this axiom system it is possible to

determine what verification condition! must be generated by a verification system for

ADA. Although the language focuses on the loop-exit construct, certain generalizations 0

are immediate (like the inclusion of the conditional construct). We show that this axiom

system is sound using the denotational semantics given here. This is the least we can

expect of the axiom system, and it insures that we can safely use it. We also show that

this axiom system is (relatively) complete. Completeness guarantees that anything that

174

9



is true about the loop language does have a proof in the axiom system we give. This is

important because it means we can stop looking for a more comprehensive set of proof rules.

The proof of completeness requires a slightly different type of definition for the semantics

of the loop language than the traditional one, but the definition integrates easily into the

traditional definition. This permits the incorporation of yet other generalizations from the

literature of denotational semantics.

We assume the reader is familiar with Hoare triples [Hoare, 1969], and somewhat famil-

iar with denotational semantics [Stoy, 1977] and the classical soundness and completeness

results for Hoare logic, for example [Loeckx et al., 19841.

The while loop. We begin by considering the proof rule for the while loop, which

is a special case of the loop statement. The proof rule shows how to derive Hoare triples

from other Hoare triples. Hoare triples are statements of the form { P } S { Q }, where

P is an assertion called the precondition, S is a program segment, and Q is an assertion

called the postcondition. A Hoare triple { P } S { Q } asserts that starting the program

S in a state satisfying P will result in a state satisfying Q (if S terminates). Here is the

familiar rule for the while construct:

{I&B} S {I}, (I&-'B) =. Q
{I} while B loop S end loop; { Q}

This rule permits one to derive Hoare triples concerning the while loop, if one can derive

the two premisses. The assertion I is called the loop invariant. Cook proved that this

rule was sound and (relatively) complete in a computational semantics for while programs

[Cook, 1978]. A si.nilar result was proved by de Bakker who used denotational semantics

to assign meaning to the program segments [de Bakker, 1980]. In denotational semantics

each statement of the language is denoted by a function that transforms states to states.

We use the symbol C for the traditional mapping of programs to their denotations. For

example, the denotation of the while loop with condition B and body S is the recursive

function fwh defined as follows (we use a as a formal parameter for states):

175



fwh(°) = if IsTrue (&iB]o) then fwh(CJS]I) else a

where E'Bfr is the value of the boolean expression B in state a, and C Sla is the deno-

tation of program segment S applied to the state a (in other words, the resulting state

obtained after executing S beginning in state a). This is just one case, the case for the

while loop, in the recursive definition of the function C. We write this case in the definition

of C as:

C[while B loop S end loop;]o=fwh(a)

Using this definition of the meaning of the while loop, the interpretation given to the

Hoare triple {P} while B loop S end loop; {Q} is

Va. Pistrueino&&# or error => Q is true in a'

where a' fwh(a). If fwh(a) does not terminate, we set a' = error. We have defined

here a logic for partial correctness, since termination is a hypothesis in the implication

above.

The loop-exit construct. The proof rule for the loop statement is reminiscent of

the rule for the while statement. Here is the informal presentation of the rule.

{I}s{I)

{I}1 : loop S end loop 1; {Q,}

Like the while rule, the rule for the loop statement has an invariant assertion which we

have called I in the rule above. Execution of S, the body of loop, must maintain the

assertion I. It is interesting to note that the loop rule requires just one invariant assertion 0

despite the possibility of multiple exit statements in the body of the loop. The rule for the

exit statement has the premiss that if the "when" condition is true, the postcondition of

the loop holds.

(Q &B) * Q,
{Q}exit I when B; {Q&-B}

176



Here Q1 is the postcondition of the loop labeled 1.

Now we check to see if we can derive certain obviously true Hoare triples from these

rules. These rules would be inadequate if we could not use them to derive even simple Hoare

triples concerning the loop and exit statements. Our purpose at present is to strengthen

the plausibility of these rules. Later we will prove that these rules derive only true Hoare

triples, and that all true Hoare triples can be proved using these rules.

For example, if the loop does not terminate we expect to conclude any postcondition

0 Q (since this a property of partial correctness logics). So we believe intuitively that the

following Hoare triple is true and should be derivable:

{P}l : loop null; end loop 1; {Q}

Indeed, this is derivable by a single application of the loop statement rule, if the Hoare

triple { P } null; { P } is derivable. This last Hoare triple can be taken as the meaning of

* the null or skip statement.

Another way the loop may not terminate is if the guard on the exit is always false, as

in the program segment of the next Hoare triple:

{P}I : loop exit 1 when false; end loop 1; { Q}

The previous Hoare triple should be true, regardless of the assertions P and Q. This is

derivable using the loop statement rule, if the Hoare triple { P } exit I when false; { P }

is derivable. This follows from

(P& false) = Q
*P } exit I when false; { P & true}

which is an instance of the exit rule.

Finally we expect the Hoare triple

{P}1 : loop exit I when, true; end loop 1; {P}

177



to be true, since this program segment acts like a no-op instruction. The Hoare triple

abovc is derivable, since

(P& true) #- P

{P} exit 1 when true; {P&false}

is an instance of the exit rule. (To obtain the postcondition P we must use the rule of

consequence and the fact that P & false =. P.)

A simple language. To be specific we give the syntax of the language we wish

to consider. This language is very simple; it contains hardly more than the loop-exit

construct.

S ::= assign; I S S2 I I : loop S end loop 1; 1 exit I when B;

We shall assume that loops are labeled uniquely in all program segments in this language.

We call the program segment closed if all statements of the form exit l0 when B are 0

nested inside a loop statement labeled lo. Clearly only the closed program segments are

meaningful when considered in isolation-a requirement an ADA compiler must check.

The denotations we give to program segments differ slightly from the typical denota- 0

tions. Instead of transformations from states to states (States --, States), we use trans-

formations from states to pairs of labels and states (States -- (Labels x States)), where

Labels is the set of possible identifiers for loops. We must add a special designator ne (for 0

normal exit) to the set of labels. This designator indicates the normal sequential execution

has been followed.

The denotations we give to program segments of the simple loop language are functions 9

from states to pairs of labels and states. The semantic function that maps programs

segments to their denotations is denoted X, and it has the functionality:

0

X S --+ States --+ ((ne + Labels) x States)

178



Next we give the four cases in the recursive definition of the semantic function X. The

first case is that of assignment. We assume the assignment statement modifies the state

in some matter.

X[assign;1r = (neo)

The state a' is the resulting, modified state after the assignment. The details of the

modification are of no importance to the present discussion.

The next case is for the sequential execution of two program segments. If the execution

of S, proceeds normally, then the program segment S2 is executed in the resulting state.

Otherwise, the execution of S2 is skipped.

XjS 1 S21a
let (j,c') = XIJS i in

if j = ne then X JS 2 a' else (j, a')
end

The remaining two rules are for the remaining two types of statements in the language,

which together constitute the loop-exit construct. The exit statement is the one statement

whose execution can result in initiating a path of executing that is not the "normal"

sequential path represented by the pair (ne, a). But this occurs only if the guard is true,

in which case the result is (1, a) where I is the label of the loop being exited. Notice that

the exit statement does not, in any case, change the state.

Xlexit I when B;Ja' =

if IsTrue (&[BJ a) then (1.) else (ne.a)

As in the case of the while statement, the denotation of the loop statement is a recursively

defined function. We have called the function lp below.

X11 : loop S end loop Ila - flp(a)

179



where rec f1p(c) =

let (j,a') = XISa in
if j = ne then flp(a )

else if j = 1 then (ne,cr')
else (j,o')

end
end

The function flp keeps calling itself recursively until j :3 ne. If j is the label of the current

loop then the loop statement exits normally. This is the only instance in the definition

of X that a subcomponent, in this case the body of the loop, exits with j ne and the

language construct transforms it to a normal termination j = ne. The final case in the

definition of flp is when j $ ne and j 0 1. In this case the exit of the loop labeled j is

propagated, presumably to be caught by loop j.

For the purposes of defining which Hoare triples are true, we first define what we mean

by an assumption. An assumption is a pair consisting of a label and an assertion. It is

intended that the assumption (1, o) represent the fact that Q1 is the postcondition of the 0

loop labeled 1. We shall be interested in sets of assumptions in which a label occurs at

most once. We will call these sets proper. Sets of assumptions that are not proper indicate

that a loop has more that one postcondition, and we have no use for this. This technique

is inspired by a similar construction for goto statements [de Bruin, 1980].

We say that the Hoare triple { P } S { Q } is valid with respect to a proper set of

assumptions b (we will write this as 4 I { P } S { Q }) whenever

Va. P is true in a & a' 0 error = Qj is true in a'

where (j, a') = X ISjo and the assertion Qj is defined as follows:

Q, if j = ne;
Qj = Q1, if j = I for some (1, Q1) E 1;

false, otherwise.

Intuitively the notion of validity means that if P is true in a and S exits normally, then

Q is true in the resulting state, and if S exits a loop 1, then Q, is true in the resulting

180



state. If S exits some loop lo that is not in the set of assumptions, then the Hoare triple

is automatically false.

Whenever S is closed (i.e., when j = ne for all a), the definition of validity corresponds

to the usual one, because Qj is always Q. Thus the semantics for the loop-exit construct

presented here can be easily integrated into the usual semantics with the following defini-

tion:

CIESI~u
let (j, ) = X Sja in

if j =ne then a' else error
end

Thus, the denotations of closed statements can be viewed as state transformations like in

the classical approach. This is important in fitting together these rules for the loop-exit

construct with results on other constructs like procedure call rules.

* The details. Next we give the precise rules for the loop-exit construct. This requires

making the previous rules relative to proper sets of assumptions. Here is the rule for the

loop statement:
0 4tU(1,Q/) -{I}S{I}

41-{I}l : loop S end loop 1; {Qj}

We have discharged the assumption (1, Q1) by enclosing S in the loop labeled 1. The exit

rule introduces the assumption (1, Q1).

(Q & B) =: Q1
(1,Q) - { Q}exit I when B; {Q&-'B}

We list the remainder of the axiom system to show the effect of relativizing the usual

rules.

O (P' } assign; {P}

* 4- {P}SI{Q}, 'L'F-{Q}S 2 {R}
SUI " { P ) S S2 { R}

181



P= P2, '0l-{P2 }S{NO, Q1= Q2

I- F{ P1 } S f Q21 }
With the precise statement of the rules of inference for the loop-exit constructs of

the simple programming language, it is now possible to give the proof of soundness and

(relative) completeness. We do not give the whole proof as that would not be illuminating.

We give the cases of the proof for the loop and exit statements only, beginning with the

exit statement, since it is easier.

Soundness of the exit statement. Suppose that (Q & B) = Q. We are to show that

the Hoare triple { Q } S { Q & - B } is valid with respect to (1, Qj), where S is the program

segment exit I when B;. Let a be such that Q is true in a. The proof breaks into two

cases. Either B is true in a, in which case X Sja = (l,a) and QI is true in a by the

hypothesis, or B is false in a, in which case X JS]c = (ne, a). So, Q & - B is true in a by

assumption. Either way, the Hoare triple is valid.

Completeness of the exit statement. We are given that the Hoare triple { P } S { Q } is

valid with respect to (1, Qj), where S is the program segment exit 1 when B;. We must

show we can derive this Hoare triple. We can derive this triple in two steps using the exit

rule and the rule of consequence, if we can show that (P & B) =* Q and (P & -' B) --- Q.
(P&B) =* Q, (P&-S) =i Q

(l,Q) - {P} exitl when B; {P&-'B} '

(l,Q) -{P}exit I when B; {Q}

Assume first that P and -, B are true in a. Then X uSia = (ne, a). Since { P } S { Q } is

valid, Q is true in a. In other words, (P & -' B) =: Q. Now assume P and B are true in

a. In this case XIS]a = (l,a). Since { P} S { Q } is valid with respect to (L, Qi), Qi is

true in a. Hence both assertions hold.

Soundness of the loop statement. Suppose the Hoare triple { I } S { I } is valid with

respect to 4 U (1, QL). Let a be some arbitrary state such that I is true in a (and flp (a)

terminates). Now define the (finite) sequence

'ol ,a ..., ((j, -,,.)

182



where o = a and (ji, ac) = X JS]ri-j. The sequence stops when j : ne, corresponding

to when the execution of the loop halts and flp terminates. By induction it holds that I

is true in r,,-. And thus, if j = 1, then Q, holds. If j is some other label in 4, then the

appropriate assertion holds as well. Hence,

{I}i : loop S end loop l; {Qz}

is valid with respect to -t. This concludes the proof of soundness.

In the proof of completeness for the loop statement we will need the definition of the

weakest precondition. The weakest precondition of S and Q (relative to proper set of

assumption f), denoted wp(S; Q), is that assertion such that

b -{wp(S;Q)}S{Q}, and P => wp(S;Q)

for all P such that I- { P } S { Q }. We assume that the weakest precondition is always

expressible in the language of the assertions.

Completeness of the loop statement. Suppose that { P } L { Q } is valid with respect

to -t, where L is the program segment 1: loop S end loop 1;. We pick Q, to be Q and I

to be wp(L,Q). So by definition { I} L { Q} is valid with respect to 4,. By definition of

* the weakest precondition P =- I, so from 4I- { I } L { Q } we can derive 4 { P }L{ Q}

using the rule of consequence. Therefore, it remains to be proved that ) F- { I } L { Q }

is derivable. By the induction hypothesis we know we can derive this Hoare triple, if

{ I } S { I } is valid with respect to -I, u (1, Q).

Suppose I is true in a. Now execute the loop L beginning in this state. If we execute

the body but "half" a time, then we must have XjSjcr = (j, a') and j 0 ne. Since It I-

{ I } L { Q }, j = I or j = ' for some (1', Qp') E t. If X[Sa = (l,u') then XLja' = (ne, o'),

and since { I} L { Q } we have Q is true in a'. Hence (l,Q) I {I} S { I}. Ifj 1, then

lbu (0,Q) - { I} S {M}

follows because (j, Qj) E -0.

183



On the other hand, executing the loop may execute the body completely at least once.

In other words:

4DU (I,Q) F- {I} Lf{Q} -= u (I,Q)- {I} S L {Q}

Since I is the weakest precondition of L we have { I } S { I } (we leave the justification to

the following lemma). This completes the proof.

Lemma. Suppose 1 F- { P} S1S2 {Q} then - {P} 1 { R } where R is wp(S 2, Q).

The proof is by contradiction. Suppose D F- { P } S1,S 2 { Q }, but { P } S { R } is not valid

with respect to o. Then there is some state a for which P is true in a, but R is not true

in a', where (j, a') is XtSila. (If j : ne, then there is an immediate contradiction.) Then

in no case is it possible to arrive at a state a1" in which Q is true, as that contradicts the

assumption that R is the weakest precondition.

Conclusion. Using a somewhat different semantics we have given a proof rule for

an ADA-like loop-exit construct which is sound and complete. This rule can be safely

included in a system to formally verify the correctness of ADA programs. The loop rule is

no harder to use and understand than the rule for the while statement. The bookkeeping

necessary for associating loop labels and the appropriate postconditions is straightforward.

The only detail that prevents the rule from being applied mechanically is the discovery of

the loop invariant. This, of course, is not surprising. What is surprising is that only one

invariant must be found regardless of the number of exit statements.

References.

Cook, Steven A. "Soundness and completeness of an axiom system for program verifica-
tion." SIAM Journal on Computing, volume 7, number 1, February 1978, pages 70-90.

de Bakker, Jacobus Willem. Mathematical Theory of Program Correctness. Prentice-Hall
International series in computer science. Prentice-Hall International, London, 1980.

de Bruin, Arie. "Chapter 10: Goto statements." In Mathematical Theory of Program
Correctness, Prentice-Hall International, London, 1980.

184



Hoare, Charles Antony Richard. "An axiomatic basis for computer programming." Comm.
of the ACM, volume 12, number 10, October 1969, pages 576-580, 583.

Loeckx, Jacques J. C., Kurt Sieber and Ryan D. Stansifer. The Foundations of Program
Verification. Wiley-Teubner series in computer science. Teubner, Stuttgart, 1984.

Stoy, Joseph E. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press, Cambridge, Massachusetts, 1977.

United States Department of Defense. Reference Manual for the ADA Programming Lan-
guage. United States Government Printing Office, 1983.

185



Low

00
00
lowo
CLC

0,1



co
O0

N

04

0

0

C,)C

ccm 0

E 01

C.C)

0 0 cc

0 00

188



SEMANTICS FOR D STRUCTURES

* ~ID: D -> (States -> States)

* b 111) 1 D21J G = D [[D21] (ID[[D1 ]] a)

~D [[if B then D, else D2 end if; ]] a T
of IsTrue (0[[B]] a7) then -D [[Dj] a else [[D21] G

D [[while B loop D end loop;] 11 fwh
where rec fwh (a) =
if IsTrue (0[[B]] ay)

then fwh (I0((D11 a)
else a

end

0w88/



CLS

00

0

a)
oa

Lc) 0
LJ4 x 00

4)

F-l 0-0

x0 0)
Ca)

C-C*

-C)

0 x 0

E C S

E 0 3: 0

w 0

0 C 0

09



SEMANTICS FOR BJn STRUCTURES

Vi[[Ioop exit when B31; BJ, exit when B32; BJ2 end loop;]]

fbj

where rec fbj (0) =

if IsTrue (ve([Bl]]G)

then G

else let a V i[[BJ,]] a in

if IsTrue (e[[B2]]a)

then a
else fbj (Vi[[BJ2]])

end

ew7886/5



CLS

00
0.

0

4) co
U CD

U) .

0

x x

Cl)
w- I- CU

00

It 0 00
I.-

U)E 0

wU 0
V a)

00 0
0 0)

CL 0

0 r E
E w

0. 0. .~cc

1920



DC

* Co

U.

0 C,)

ui 0

-J-

oo C,

E- T- %)cr) C0

cc) COc

* A C

* 193



0

CL 0 E
0 0
CL c

0 0
C CL

0
U..

0. 0. E
0"0-

co

- - .
0 0 o 0

C _194



0c

-r

-I-

U) I *r A

C -4 if : 0 :

Icm

0m

0 C ln U

S -
I

*l 0. IA C* CL
<~~ ~ CLa. m I

CLa

195



O

O
0
wI,-

43

00
,-i

0

o- 0
LI.

w co w

I"=" iS=',

LL . o:
oo_

ca 6. c 0

o

196



0m

00

CL V

0 C0

Cl) (0
X X II( >

ow .r
0 %.-0

LL x 4

.0 m
U..r%( * o 0

E C4

(.~U0

0)I0 0)
0. o L

197



coJ

00

CD

CL

a

0

1. CL

oL 0 C3
Ia- - -

0

0S

I - --

0 a

E
- I U

0i0
cc :

0. '3
0 Cc-

Co e:198



Cl.,

La

199.

x 03C3 c
0.I E

oom*0
* .~ .-cc

>Ca.

0cc

199



co

I-z

I-

I-
Cl,

wL A

00

Cf)
w Iz

00

A

200



co

I- co

z

Cf)

0
* 0

LCo

o0

C/ IZ-

C/) c
wc CU C

o "a

201



z 3

LI

00

Cf)

I
F- 0)C

CI)
Cl)~0 V m
W C)3-c

0 - aC,

w II -

I- Cn~ cc

W 202



C,) D
0E00

oo
0

00

200



o

zN

0w

z

LUU
0

(El))

0 0Cl

.2 Q

U) 0
0 orV 0  Nc

E >C) Ccu *oUo) gE > 0 C

CL~ 0Cl) CO

2040



cCo

C'))

Cm)L

(n

0l LICL

0 U, U
I-.C

zI

WCC.

0 JP)
CL D

> A) 0

> * I6 02

0 a~ c C C)P

110

0o 00 CL (.)2 110..
11> 1> CL >I CL -. *. 0 0a

* a.uiC C6 ( 1) ) J

* 205



00

DI

I-

Cf)z
0

0
o E

CO) A

0 C0
LL 0C)0

z 04C

0 u)
Co 00

F- Cfl

cc00 A m
U ) 10C F C

z~ in
0 r

C. -) III* * *

a) 0.o

a) ~a- @00 -,
't 't 0 *

206



00
0N

LLw

*c 00.
.j-

>C
LU-

0 C
w ccE

Z CL
Q -

0.0

.0) Cu

4 ) U .~

a)0 7



REVISITING AXIOMATIC EXCEPTION PROPAGATION

by

Timothy E. Lindquist
Arizona State University
Tempe, Arizona 85287

(602) 965-2783

Lindquis%asu@csnet-relay

May 1, 1986

Abstract
Ada* exception mechanisms have recieved much attention in evaluations of the language's

design. In part, critics focus on the dynamic structure used to propagate a raised exception.
Axiomatic proof rules for exceptions have already been proposed using an abstraction approach
similar to that used for procedures and iteration. The approach augments a program to include
specifications describing the particulars of exception declaration and propagation. The goal of this
paper is to present an axiomatic system for exceptions that does not require augmented
specifications. The reason for constructing such a description is not to ease proofs of programs
using exceptions, but is instead to better represent the semantics of exceptions, particularly
propagation.

Index Terms -- Ada, exceptions, verification, semantics (CR categories - 4.22, 5.24)

*Ada is a registered Trademark of the U.S.Government, Ada Joint Program Office.

219



1. INTRODUCTION
Program verification methods are generally useful in areas other than proving software. For

example, Dijkstra [1] has shown the benefit in constructing a program, rather than as an analytic
tool for an existing program. Further, proof techniques developed for various language features
have helped language designers and implementors produce conceptually clearer languages and more
uniform implementations.

In this paper we consider axiomatic rules for Ada exception mechanisms. Of special interest
are rules to accommodate exceptions raised in a procedure and propagated to the calling
environment. In part, our purpose is to demonstrate that axiomatic descriptions might be
differently formulated to represent the semantics of exception features than when used in proofs.
Our rules are more closely aligned to the semantics of exceptions than to proofs. Since Ada uses
the dynamic path through the program to bind a raised exception to a handler, the mechanisms we
present elaborate possible execution paths through a program. Thus they provide the basis for
describing dynamic identifier binding such as seen in languages APL, SNOBOL, and LISP.

We present mechanisms that are analogous to those presented by Dijkstra in [1], in which

concrete mechanisms are first presented and then generalized to allow for proofs. For example,
Dijkstra first presents transformers for iteration which don't require induction, and he then
generalizes these for arguing about more realistic programs. We present mechanisms which
describe exceptions. Luckham and Polak [2] have already described exception mechanisms
axiomatically in a form that may be used to argue about programs. They augment programs with

specifications describing:

" For every handler, an assertion that will be true whenever one of the exceptions in a
when clause is raised, and

" Exception propagation; each exception propagated by a subprogram
must be specified by an assertion that is true when the exception is propagated.

Our goal is to have proof rules that don't require additional specifications. Although we
realize that augmenting the program with assertions is necessary for verification, a rudimentary

description better demonstrates the semantics of exceptions.

Proof Rules for Propogated Ada Exceptions

210



1.1 Ada Exceptions

Programs are often required to display normal behavior in the presence of unexpected

conditions or failures. So long as the failure does not indicate a flaw in the program logic,

termination of the program may not be necessary and processing may continue. Exceptions
provide this capability for Ada programs.

Ada Exceptions are declared in the same manner as any other object. A handler, or service

routine, must also be defined, and it may exist at the end of any Ada block. When an exceptional

condition is signaled, normal execution is diverted to the appropriate handler. Handlers for an

exception may be defined in different blocks depending on the scope and visibility rules of Ada.
Determining the handler to be used in servicing an exception is done based on the dynamic flow of

execution through the program. Further, the point at which execution continues after an exception

has been handled depends on which handler is used.

User-defined exceptions are placed in the declarative part of a program unit as in the example:

STACKOVER, STACKUNDER : exception;

In contrast to user-defined exceptions, several are predefined as a part of the standard

environment for a program. Built-in exceptions include constraint error, numericerror,

programerror, and tasking error. The programmer must supply handlers for built-in

exceptions, but they are raised automatically by the supporting runtime system (unless supressed).

Exceptions may be explicitly asserted with the raise statement. For example:

raise ACCESS VIOLATION;

Since handlers are placed only at the end of a block, the handler that will be used for any

exception raised in a block does not change during execution of the block. This is one of the key

differences between conditions in PL/l and Ada exceptions. The PL/1 ON-statement may be used
to alter the handler for a raised condition at any point during execution.

Determining the handler to be used for a raised exception in Ada and the point where control

returns after the handler completes depends on where the exception is raised and whether a handler

exists in the block. In the simple case, an exception, say E, is raised in the statement part of the

block and a handler (or others clause) exists in the exception part. The statements following the

raise are abandoned in this situation and control returns to the calling program unit.

If there is not a handler or others clause in the raising block then the block is abandoned

and the exception is raised in the calling block (in the case of a subprogram). Propagation, as this

is called, uses the dynamic calling structure of the program to bind a raised exception to a handler.

Other cases exist, in which an exception may be raised in the elaboration of the declarative part of a

Proof Rules for Propogated Ada Exceptions

211



program, in a rendezvous between tasks or in the execution of a handler. In these instances, the

exception is also propagated. Propagation of exceptions is analogous to the dynamic identifier

binding strategy used in several interpreted langauges.

1.2 Binding Exceptions to Handlers

When an exception is propagated, the nesting of procedure calls determines the order of

search for a handler. Suppose the execution of procudure P causes El to be raised, but P does not

contain a handler for El. El is propagated to all subroutines nested in the call leading to P's

execution. Each active procedure, from the most recent backwards, is examined for an appropriate

handler. While executing a program, it is common to have more than one active handler for an

exception. Further, if a procedure on separate invocations raises the exception El, it may be

handled differently each time it is raised.

Verification of exceptions is complicated by propagation. For example, consider the

program L in Figure 1. The procedure R is invoked twice, and each time it raises the exception T.

R does not contain a handler for T, and in fact, on successive calls to R propagation results in

different handlers being used. Two handlers for the exception T exist the second time the

statement

raise T;

in procedure R is executed. One of these handlers is created when execution of L begins;

the other when procedure Q is called from L. The procedure demonstrates how different handlers

may be used to service a raise statement on different executions of the encompassing procedure.

procedure L is;
T : exception;
procedure R is;

begin raise T;
end R;
procedure Q is;

begin call R;
exception when T => put ("Q's handler used");

end Q;
begin call Q;

call R;
exception when T => put ("L's handler used");

end L;

Figure 1. Dynamically binding exceptions to handlers.

Proof Rules for Propogated Ada Exceptions

212
0



1.3 Proof Strategy

Ideally, a predicate transformer should be formed for each procedure used in a program. In
constructing a proof, the transformer should be applied each time the procedure is called, as
determined by the proof rule for procedure call. When used in this manner, a procedure's
transformer serves as a description of the effect of invoking the procedure, and it appropriately
means that the effect of the procedure is the same, withstanding parameters, each time it is called.
Axiomatic rules, adhere to the ideal that a procedure is a parameterized abstraction, but this is done

through PRE and POST assertions rather than a predicate transformer. When used properly,
procedures have the same meaning each time they are called. With propagated exceptions,
however, a procedure's meaning may change each time it is called. Aside from parameters, the

exception handlers may be different for each call. The concept of PRE and POST assertions for a
procedure must be extended to accommodate the changing meaning that propogation may cause.

The question naturally arises: How can a static description method accurately treat exception
binding that relies on the dynamic nature of the program? Ada is defined in such a manner that static
analysis of code can determine all possible procedure nestings when an exception is raised. The
procedure execution history is a sequence of nested procedure calls leading to the statement causing

the exception. The history may be determined through static path analysis of the program.
Properties of the language allowing this are:

" procedure variables are not permitted in the language,

" procedure references are resolved using scope and visibility

rules which are based on the textual structure of the program,
- A single Ada block may define only one handler for any given

exception. Although PL/l, in which any number of handlers
may be defined in a block, may be statically analyzed, the analysis

is simplified by this restriction.

Proof Rules for Propogated Ada Exceptions

213



2. BINDINGS FOR AXIOMATIC DESCRIPTIONS

To simplify the rules which follow, we restrict the language in a manner to allow for

exceptions in the absence of several other language features. Rules are presented based on a
language framework including procedures (without global references), assignment, scalar types

and if-then-else selective statements. Exceptions are raised explicitly with the RAISE statement,

and handlers are defined according to the language.

The rules presented do not deal with exceptions that are raised in elaboration of a declarative

region. Further, we assume that a handler will be found for a raised exception. The rules assume

that pragma supress is not used and that built-in and user defined exceptions are enabled.

2.1 Substitution Operator and General Axioms

Simultaneous substitution R(FI/XI,... , Fn/Xn) is the predicate R with F i replacing

all free occurrences of Yi. The substitutions take place simultaneously; that is, each substitution

is not affected by any other, provided that all Xi are distinct.

The general axioms presented here are also adapted from Floyd [3]. These are:

If I- P {S} Q and I- P' (S) Q'
then AxI. - P and P' {S) Q and Q'

Ax2. 1- PorP' {S) Qor Q'

2.2 Predicates and Continuations

The predicates used in an axiomatic description of a language are first order logic assertions

whose free variables are the user-defined identifiers from the program. The predicates characterize

the state space of the program. To these predicates we add a characterization of the continuation. A

continuation predicate accompanies a statement's post condition to indicate how execution

proceeds. The predicate, which is similar to the continuation function of a denotational description

[4], characterizes one of three possible continuations:

CONT -- continue

ABAN -- abandon

PROP T -- propogate the exception named T

Proof Rules for Propogated Ada Exceptions

214



Predicates over the identifiers of the program characterize continuation states. For example,

X + 5 5 integer'last

is one of the conjuncts in a predicate we call

NOEXCEPT( X + 5)
The predicate characterizes the CONT continuation state for evaluating the expression X+5.

Post assertions are augmented to include a conjunct characterizing the continuation state. We have
constructed the rules in such a way as to allow the post assertion for a command to include possibly
many disjuncts. Each disjunct describes a separate execution path through the statement. Disjuncts

are made up of a predicate describing the state space for the path and a predicate describing the

continuation state.

2.3 Axiom Scheme for Assignment

To provide the distinction between execution paths through the program we use Floyd's
strongest verifiable consequent (svc) rule [3] and apply it to axiomatics. The rule takes the form:

I- P and NOEXCEPT(f(x,y)) {x:=f(x,y)}

4 3 x0 (x=f(x0 ,y) and P(x0 /x)) and CONT

With the simplified NOEXCEPT given above, we might have as an axiom:

I- x>5 and x+5<integer'last {x:=x+5}

3 x0 (x=x 0 +5 and x0 >5) and CONT

which can be simplified to:

I- x>5 and x+5 < integer'last {x:=x+5) x>10 and CONT
When it is convenient, we will drop the predicate NOEXCEPT from preconditions for

brevity and clarity.

2.4 Explicitly Raising an Exception

The predicate transformer for a raise statement that may result in propagating the exception to

a nonlocal handler is now presented. To determine which handler of the possibly many active ones
will be used, a set of active handlers could be retained for each execution path. Although this

approach would have the advantage of reflecting the dynamic declaring environment existing at the

Proof Rules for Propogated Ada Exceptions

215



point of raising the exception, Ada semantics define propagation in terms of abandoning the current

frame and raising the exception in the calling procedure. To do this our rule for raising an

exception checks whether the exception is defined in the block or whether it must be propagated

outside the block. Accordingly the continuation state is set.

To determine whether a handler is locally declared, we add an indication of the exception

handlers to the language of the system. Thus, if we have:

begin
SO

exception when E1 => S1 ;

when En => Sn; 0

end;

We represent this in proofs as: P{S0 A EI=>S1...En=>Sn}Q and we will abbreviate

EI=>S1...En=>Sn as just E_H. If S0 is compound then we keep EH for each command in 0

So . If the set of handlers does not enter into the rules for the statement, then it is dropped from the

rule. The rules for raising an exception using the set of local handlers as:

if T handled in E_H by Si and [- P (Si A no-handle) Q

then I- P {RAISE T A E_H} Q and ABAN

According to the rule, if a handler for T is local to the block, then the state space is effected

by executing the handler. The continuation state in this case indicates that the remainder of the

block is to be abandoned. This state will be passed through any remaining statements in the block.

Note that no-handle is the local set of handlers for executing the handler Si. That is to say, if an

exception is encountered in handling an exception, then the exception is propagated to the invoking

environment.

Alternatively, another rule is needed when the handler is not contained in the excepting

block. The following rule causes the exception to be propagated to the calling environment.

if T not handled in E H

then I- P {RAISET A EH } P and PROPT

When the exception must be propagated to the calling environment the precondition P must

also serve as the precondition (possibly modified by environment changes) for the handler

eventually found.

Proof Rules for Propogated Ada Exceptions

216



2.5 Sequential Composition

Sequential composition is no longer sequential composition, at least not referring to

seqeuntial execution of statements. That is, when a sequencer is introduced to the language, the

semi-colon no longer implies sequential execution. One approach would be to consider commands

to be separate from sequencers, and to allow sequential composition to be applied to commands

only. The problem with this approach is that implicitly raised exceptions turn a command into a

sequencer. Thus, the normal rule for composition must be modified for Ada even without explicit

exceptions. Here we present three rules for composition, one for each continuation state. When an

exception has been noted (by an ABAN or PROP continuation state), subsequent statements in the

block are ignored by the rule.

A. Abandoned execution paths:

If I- P {SI} Q and ABAN

then I- P {Sl;S2} Q and ABAN

B. Propagate an exception along the path:

If I- P {S1} Q and PROP T

then I- P {S 1 ; S2} Q and PROP T

C. Continued statements:

If I- P {S1} Q and CONT and I- Q {S2} R and CONT

0 then I- P {Sl; S2} R and CONT

2.6 A Selection Rule: if-then-else

The rule for if-then-else is modified to characterize the separate execution paths as done by

Floyd [3]. The rule takes the form:

If I- PandB {S1 } Q and I. Pand~B {S2 1 R

* then I- P (if B then S1 else S2 }  Q or R

Proof Rules for Propogated Ada Exceptions

* 217



2.7 An Example of a Locally Handled Exception

Thus far, the rules presented are sufficient to see how explicitly raised exceptions are bound

to local handlers. The following example is constructed to demonstrate a block which can conclude

after handling an exception or normally.

begin
PRE(x > 5);
if x = 7 then RAISET;

else x := x + 2; endif;
x :=x + 1;

exception
when T => x := x + 4;

end;
We want to show:

j- x>5 {if-then-else; x:=x+l}
(x>8 and x#10 and CONT) or (x>9 and x=11 and ABAN)

To argue this we show a proof of each path through the program and then combine them

using axiom Ax2.

Since I-x>5 and x=7 {x:=x+4 A no-handle} x>9 and x=11 and CONT
we have: I-x>5 and x=7 {RAISE T A E_H} x>9 and x=11 and ABAN 0
and for the if: I-x>5 and x=7 {if-then-else} x>9 and x=11 and ABAN
(We have removed the "or FALSE and CONT" from the else clause). Applying the;

I- x>5 and x=7 {if-then-else; x:=x+l} x>9 and x=11 and ABAN (1)
Following a similar argument for the else path we get: 0
I- x>5 and x#7 fif-then-else; x:=x+l} x>8 and x*10 and CONT (2)

Combining (1) and (2) using axiom Ax 2 provides the desired theorem.

2.7 Propagating Exceptions and Procedure Calls

As can be seen with the above argument, proofs are constructed based upon possible

execution paths through the program. Although the rules for procedure invocation do not explicitly

show this proof approach (neither does the rule for if-then-else), one can see that we rely on the

availability of path information. The path provides access to the nesting structure of procedure

calls; thus allowing raised (and propagated) exceptions to be bound to the most recently created
handler (dynamic binding). A rule for procedures is now presented to demonstrate handling

Proof Rules for Propogated Ada Exceptions

218



propagated exceptions. The rule is simplified by excluding nonlocal references from the procedure
and problems arising from aliases created through parameters. Procedures are abstracted through
PRE and POST assertions, and we assume that I-- PRE { S I POST where S is the statement

body of the procedure. POST is assumed to be in the form:

(D 1 and C 1 ) or (D2 and C2 ) or ... or (Dn and Cn)

where: Di is a predicate characterizing the data state of the computation and

Ci is a predicate characterizing the continuation state.

If we have a call to R, where R is defined with parameter x;

call R ( a);

then the following rule applies:

I-- P and PRE(a/x) {call R(a) A E_II} Q1 or Q2 or ... or Qn

where each Qi is derived from Di, Ci according to:

If Ci is PROP T

then if T is handled in EH at j and

I-- P and PRE(a/x) and Di(a/x) {Sj A no-handle} Ri

then Qi is (Ri and ABAN)

else if T is not handled in E H

then Qi is (P and PRE(a/x) and Di(a/x) and PROP T)

otherwise ( Ci is ABAN or CONT)

Qi is (Di(a/x) and CONT)

2.8 An Example of Exception Propagation

We modify the previous example to contain a procedure, R, that does not handle exception T:

procedure R ( x ) is;
PRE ( x>5 );
POST (( x>8 and x#10 and CONT) or ( x=7 and PROP T));
begin if x=7 then RAISE T;

else x := x + 2; endif;
x := x + 1;

end R;

Proof Rules for Propogated Ada Exceptions

219



If we have a call to R as in the block below then the T raised in R should be propagated and

handled in the calling block.

begin PRE ( a > 6);

call R ( a );

exception *
when T => a a + 3;

end;

We show:

[-- a>6 { call R(a) A EH } (a>8 and a#10 and CONT) or (a=10 and ABAN)

Applying the procedure call rule:

Q, is obtained by substituting on the post condition POST as:

(a>6 and a#10 and CONT)

Q2 is obtained from the first half of the rule since C2 is PROP T and T is handled

locally: 1-- a>6 and a>5 and a=7 and NOEXCEPT(a+3){ a:=a+3 A no-handle }

a=a 0 +3 and a0 >6 and a0 >5 and a0 =7 and CONT

i.e., -- a=7 { a:=a+3 A no-handle } a=10 and CONT

So, Q2 is (a=10 and ABAN) providing our desired result.

3. SUMMARY

An axiomatic approach to describing exception propagation in Ada must be based on the

execution paths through a program since a raised exception is bound to the most recently created

handler. This paper presents rules which are applied based on execution paths. Predicates

describing the continuation state of a command are used to augment post conditions. The

continuation state information is propagated through execution paths along with predicates

characterizing the data space of a program. An adaptation of Floyd's Strongest Verifiable

Consequent (SVC) is used to generate post conditions.

When commands, such as assignment statements, may cause exceptions to invoke specific

actions rather than abort in error, typical rules for sequential composition of statements must be

modified. In Ada and other languages, such as PL/l, commands (and expressions) that may

Proof Rules for Propogated Ada Exceptions

220



generate exceptions must be considered to be sequencing statements. With this possibility, we can

no longer define the semi-colon occuring between two commands to imply sequential composition.

It must instead revert to being a statement separator (or terminator). In this paper we present rules

for commands that provide continuation semantics along with functional semantics. The rule for a

semi-colon is modified to account for the possible continuation states resulting from commands

(and scqueiicers).

4. REFERENCES

[ 11 Dijkstra, E.W., A Discipline of Programming. Prentice Hall, 1976.

[2] Luckham, D.C. and W. Polak, "Ada Exception Handling: An Axiomatic Approach," ACM
Transactions on Programming Langauges and Systems, Vol. 2, No. 2, April 1980.

[3] Floyd, R.W. "Assigning Meanings to Programs," Proceedings of Symposium of Applied
Mathematics: Mathematical Aspects of Computer Science, AMS, Providence RI (1967).

[4] Tennent, R.D., Principles of Programming Langauges, Ed. Hoare, Prentice Hall, 1981.

Proof Rules for Propogated Ada Exceptions

221



Revisiting Axiomatic Exception

* May 14,1986

presented by:

Timothy E. Lindquist
Arizona State University
(csnet: Lindquis@asu)

223



Goal:
To have proof rules that don't require

additional specifications and which
conceptually represent the semantics of
exception propagation.

* Propagation uses the dynamic calling
structure of the program to bind a raised
exception to a handler.

* Propagated exceptions consequently
possess many of the properties of
dynamically bound identifiers.

224



Proof Strategy

To allow for the dynamic nature of

* propagation, we present rules that aid in

identifying the execution paths through a

* program (strongest verifiable consequent).

Continuations for Axiomatic Systems:

Augment predicates characterizing the

* state space of a program with predicates
characterizing the continuation state.

225

0



We are concerned with three:
* CONT continue
* ABAN abandon
* PROP T propagate T

Assignment:

I- P and NOEXCEPT(f(x,y)) {x := f(x,y)J
S

3 x0(x=f(x0 ,y) and P(xd/x)) and CONT

2

S

226



NOEXCEPT M is a predicate over program

identifiers characterizing the data
states in which f may be evaluated
without generating an exception.

Example:

One of the conjuncts in NOEXCEPT(X+5)
is:

X + 5 _< integer "last

So we might have as an example of assignment:

x > 5 and NOEXCEPT (X+5) {X := X+5}

3 x0 (X = X0 + 5 and X0 > 5) and CONT

227



Raising and Exception:

if T handled in E_H by Si and

I- P I Si A no-handle 1 Q and CONT

then

-P I RAISE T A E_H} 0 and ABAN

if T not handled in EH
then

-P I RAISE T A E_H P and PROP T

228



WHEN RAISING an EXCEPTION:

1. EH is an abbreviation for:

exception when E1 =: SI

when En > Sn

end

2. When T is handled in EH we show:

P (Si A nohandle} Q and CONT

Which says that if an exception occurs in
handling an exception, then propagate it.

3. We abandon the remainder of the

statements in any event by
PROPT or ABAN

229

0=



WHEN A LANGUAGE PROVIDES IMPLICIT

EXCEPTIONS, SEQUENTIAL COMPOSITION

MUST BE MODIFIED

A COMMAND BECOMES A SEQUENCER
WHEN AN IMPLICIT EXCEPTION (THAT
WILL BE HANDLED) IS RAISED

230



Sequential Composition:

a. if I-P IS, 1 0 and ABAN

then I--P IS 1 ;S21 Q and ABAN

b. if I- P IS, I Q and PROPT

then I- P I S1 ; S 2 }Q and PROP T

c. if I- PISI 10 and CONT and

-0 I S2 I R and CONT

* then I- P IS 1 ;S21 R and CONT

231



If-then-else

if P and B { S 1 Q and

I- P and not B I S2 R

then

F- P {if B then S1 else S2 1 Q or R

0

0

232



B?

P and B P and'~

1 2

Q R

Lindquist (AZ State)

233



Procedure Calls and Propagation:

Abstract procedures through PRE and

POST assertions. Also assume that POST is

of form:

(D1 and Cl) or... or (Dn and Cn)

where: Di characterizes the data state,

Ci characterizes the continuation

2

234--



if we have a call to procedure R with
* parameter x then the following rule applies:

I- P and PRE(a/x) I call R(a) A EH I

*01 or 02 or ... or Q

where each Qi is derived from Di ,C i as:

if Ci is PROP T

* then if T is handled in EH at j and

I- P and PRE(a/x) and Di(a/x)

I Sj A no-handle I Ri

* then Qi is (Ri and ABAN)

else if T is not handled in EH

then Qi is (P and PRE(a/x) and

* Di(a/x) and PROP T)

235



otherwise (C1 is ABAN or CONT)

Qi is (01(alx) and CO NT)

236



Summary

* sequential composition must change
when commands become sequencers
as in Ada.

-" strongest verifiable consequent allows
easier identification of execution paths

- thus providing dynamic propagation

2

237



Program Development by Specification and Transformation

(PROSPECTRA)

European Strategic Programme for Research in Information Technology

2

239



copyright 1985 by

PROSPECTRA Project

Universit~t Bremen

Univeritit Dortmund

Universitit Passau

Univeritit des Saarlandes

University of Strathclyde

SYSECA Logiciel

SYSTEAM KG Dr. Winterstein

under the ESPRIT Programme of the
Commission of the European Communities

240



PROSPECTRA Project

CONTENTS

1 T itle ........................................................................................................................ 6 -7

2 S u m m a ry ................................................................................................................ 6 -7

3 O b je c tiv e s .............................................................................................................. 6 -8

4 Compliance with ESPRIT ................................................................................... 6-10

5 State of the Art ................................................................................................. 6-12

6 Project Description ............................................................................................... 6-16

6.1 Methodological Framework ............................................................................... 6-16

6.2 Formal Basis .................................................................................................... 6-20

6.3 Transformation in Ada/Anna .............................................................................. 6-20

6.4 System Overview ......................................................................................... 6-21

6.5 User Interaction with the System ....................................................................... 6-22

6.6 System Development Components ............................................................. 6-25

6.7 Transformation Development Components ...................................................... 6-29

f 6.8 Ada/Anna Development Components ............................................................... 6-29

6.9 Control Components ........................................................................................ 6-31

7 Project Consortium ............................................................................................... 6-32

7.1 Project Structure .............................................................................................. 6-32

7.2 Contribution of each Partner ............................................................................. 6-33

Sections 1 to 6 of this PROSPECTRA Project Summary are taken from the Technical Annex of
the contract between the Partners and the Commission of the European Communities (ESPRIT
Project # 390).

241



6

I

4

U

I

a

I

4

I

I

242 6



*I Title

PROgram aevelopment 
by

SPECification and

* ~TrAnsformation

2 Summary

The PROSPECTA project shall provide a rigorous methodology for developing
c o r r e c t software and a comprehensive support system.

The methodology shall allow the integration of program construction and valida-
tion during the development process. Customer and implementor start with a
formal specification, the interface or "contract". This initial specification
can then gradually be transformed into an optimized machine-oriented executable
program. The final version is obtained by stepwise application of transforma-
tion rules. These are carried out by the system, guided interactively by the
implementor or automatically by compact transformation tools.

The final version is correct by construction: only the applicability of trans-
formation rules needs to be validated at each step, assisted by the system.

Transformation rules are proved correct once and for all. They shall form the
nucleus of an extendible knowledge base, the method bank, together with pre-
fabricated program components, previous program versions, and entire develop-
ment histories that can be replayed.

The strict methodology of Program Development by Transformation shall be com-
pletely supported and controlled by the system, enabling the construction of "a
priori" correct programs from formal specifications. However, the system shall
also allow other program development styles where the user assumes responsibi-
lity for unguarded development transitions. Moreover, it shall be possible to
integrate existing program components based on their specification, and to
develop them further.

The system shall comprise basic components for the application of individual
transformation rules and of compact development methods described as transfor-
mation scripts; these will provide its real power. Any kind of system activity
is conceptually and technically regarded as a transformation of a "program" at
one of the system layers. This provides for a uniform user interface, reduces
system complexity, and shall allow the construction of system components in a
highly generative way.

Chasing Ada/Anna as a standard language, and standard tool interfaces (DIANA,
CAIS, PCTE), shall ensure portability of the"system as well as of the newly
developed software.

243



PROSPEC TR A Project

3 ObjectIves

Correct Programs

Current software developments are characterized by ad-hoc techniques, chronic
failure to meet deadlines because of inability to manage complexity, and unre-
liability of software products. The major objective of the PROSPECTRA project
is to provide a technological basis for developing c o r r e c t programs.
This will be achieved by a methodology that starts from a formal specification
and integrates verification into the development process. Complexity is managed
by abstraction, modularization and stepwise transformation. Programs need no
further debugging; they are correct by construction w.r.L the initial specifi-
cation. Adaptative maintenance is greatly facilitated by replay of developments.

Rigorous Methodology

The envisaged methodology for program development shall be sufficiently rigo-
rous, on a solid formal basis, to allow validation of correctness during the
complete development process. It is deemed to be more realistic than the con-
ventional style of a posteriori verification: the construction process and the
validation process are broken down into manageable steps; both are coordinated
and integrated into an implementation process by stepwise transformation that
guarantees a priori correctness w.r.t. the original specification. Efficiency
considerations and machine-oriented implementation detail come in by conscious
design decisions from the implementor when applying pre-conceived transforma-
tion rules. A long-term research aim is the incorporation of goal orientation
into the development process. In particular, the crucial selection in large
libraries of rules has to reflect the reasoning process in the development.

Formal Specification 

Formal specification shall be the foundation of the development to enable the
use of formal methods. Existing specification techniques shall be consolidated
and made amenable to mechanical verification. High-level development of speci-
fications and abstract implementations (a variation of "logic programming") is
seen as the central "programming" activity in the future.

Uniform Language Spectrum

Development by transformation receives increased attention World-wide. However,
it has mostly been applied to research languages. Instantiating the general
methodology and the support system to Ada and Anna (its complement for formal
specification) shall make it realistic for systems development including con-
currency aspects. Ada/Anna taken together cover the complete spectrum of lan-
guage levels from formal specifications and applicative implementations to
imperative and machine-dependent representations. Uniformity of the language
enables uniformity of the transformation methodology and its formal basis. It
is hoped that the complexity of Ada itself will also become more manageable.
Stepwise transformations synthesize Ada programs such that many detailed lan-
guage rules necessary to achieve reliability in direct Ada programming are
obeyed by construction and need not concern the program developer. -

In its present extent, the project will concentrate on specification and imple-
mentation development at the applicative level and the generation of imperative
versions. Optimization transformations at the imperative level, analogous to
those of a conventional optimizing compiler, will be of less concern.

Method Bank as Knowledge Base

Individual transformation rules, compact automated transformation scripts and
advanced transformation methods shall be developed for Aca/Anna to form the
kernel of an extendible method bank. It shall thus embody some formalized

244



"programming" knowledge and expertise analogously to a handbook of physics. It
is also expected to provide initial support for goal-oriented selection of
rules and scripts. Presently, tte PROSPECTRA project does not yet incorporate
the development of a full scale expert system for program development; this may
well be an objetive for the future.

Comprehensive System Support

Support of the methodology by a powerful system is essential. It shall consist
of a comprehensive set of interrelated components forming an advanced Ada
Program development Support Environment. Existing environments only support the
conventional activities of edit, compile, execute, debug. Existing transforma-
tion systems are mostly experimental and hardly have production quality in user
interface, efficient transformation or library support. Conventional verifica-
tion systems are monolithic and only support a pos-teriori verification. The
support of correct and efficient transformations is seen as a major advance in
programming environment technology.

R eauction of Systems Complexity

The central concept of system activity shall be the application of transforma-
tions to trees. Generator components shall be employed to incorporate the
hierarchical multi-language approach, to construct transformers for individual
transformation rules and to incorporate the hierarchical multi-language
approach. Generators increase flexibility and avoid duplication of efforts;
thus the overall systems complexity is significantly reduced.

Perspicuous User Interface

Reduction of system complexity shall also imply a reduction of the diversity of
user interactions. A small number of uniformly applicable commands shall form
the basis for communication with the system. The user interface shall benefit
from high-resolution display technology to present a hierarchy of rules, pro-
gram versions, catalogues, commands, and development histories in a perspicuous
form on appropriate windows manageable in parallel. Each such object shall have
a uniform internal representation as a tree with different classes of attri-
butes. However, the user shall always operate on the particular intuitive
external form in which the tree is paraphrased (a text, a menue).

Efficient Transformation

• Transformers shall be generated for (classes of) rules and scripts. In analogy
to LALR parser generators, the tree transformer generator shall analyze the
properties of a rule in the context of other rules to compute application stra-
tegies etc. at transformer generation time. This allows a significant increase
in efficiency at transformer execution time, in particular for scripts, i.e.
sets of rules to be applied together. In existing systems, applicability condi-

* tions for rules are either expressed purely syntactically or as verification
conditions about the context to be proved on the side. In the proposed system,
applicability conditions shall be described in terms of semantic attributes.
This is appealing from a conceptual point of view since it relates to the well-
understood notion of attribute grammars. On the implementation side, a conside-
rable increase in efficiency of transformation application can be expected, as

* context Information Is available locally and can be incrementally updated.

Transformation Scripts

The transition from collections of individual rules to scripts Is a major step
forward in the mechanization of transformation descriptions. Rules shall be
described uniformly, whether used individually or incorporated into a script.

* Optional application strategies shall be furnished separately. Scripts can be
seen as a structured breakdown of monolithic optimizers; they can be applied
Individually under the methodology, guided interactively by the user.

245



PROSPEC TR A Project

4 Compliance with ESPRIT

Engineerino Discipline

The PROSPECTRA project aims at making software development an engineering
discipline. In the development process, ad hoc techniques shall be replaced by
the proposed uniform and coherent methodology, covering the complete develop-
ment cycle. Programming techniques shall be formalizec' as transformation rules
and methods with the same rigor as engineering calculus and construction me-
thoas, on a solid theoretical basis. Rules in the method bank shall be proved
correct once and for all and shall thus allow a high degree of confidence.
Since the methodology can be completely controlled by the system, reliability
is significanty improved and higher quality can be expected.

Speci fication

Formal specification of requirements, interfaces and abstract designs (inclu-
ding concurrency) shall relieve the programmer from unnecessary detail at an
early stage. Detail comes in by gradual optimizing transformation, but only
where necessary for efficiency reasons. Validation by formal verification i,
integrated into the construction proces. Specifications are the oasis for
a0aptations in evolving systems, with possible replay of the implementation.

Procramming Language Standard 

Ada vill become central for a common European technology base. Dedicated to
embedded information systems, it allows the integration of -V and SvV solutions.
Complemented by Anna, it covers the complete spectrum from non-imperative
specification and design to machine-oriented representations where required.

Research Consolidation

Research in language design and methodology has traditionally come from Europe;
strong expertise in formal methods is concentrated here and has had consider-
able international influence. It is of strategic importance to encourage re-
search and retain its potential in Europe. The PROSPECTRA project shall contri-
bute to the technology transfer from academia to industry by consolidating
converging research in formal methods, specification and non-imperative "logic"
programming, stepwise verification, formalized implementation techniques,
transformation systems, and human interfaces.

Industry of Software Components

The portability of Ada allows pre-fabrication of software components. This is
explicitly supported by the methodology. A component is catalogued on the basis
of its interface. Formal specification in Anna gives the complete semantics as
observable by the user; the implementation is hidden and may remain a company
secret of the producer. Ada/Anna and the methodology emphasize tha pre-fabrica-
tion of generic, universally usable components that can be instantiated accor-
ding to need. This will invariably cut down production costs by avoiding dupli- 0
cate efforts. The production of perhaps small but universally marketable compo-
nents on a common technology base will not only foster a European market but
also assist smaller companies in Europe.

Tool Environment

Emphasis on the development of a comprehensive support system is mandatory to
make the methodology realistic. The system can be seen as an integrated set of
tools based on a minimal Ada Program Support Environment. As such the system
shall be compatible by adhering to emerging interface standards such as DIANA,
CAIS and the planned ESPRIT Portable Common Tool Environment. Because of the
generative nature of system components, adaptation to future languages shall be
comparatively easy.

246



In relation to the ESPRIT 1984 Workplan, the following R&D topics are covered:

2.1: general, and type B projects:

- practical and disciplined system development methods: a coherent methodology
as well as individual methods, e.g. interface transformation,

- effective methods of software production and maintenance: a coherent
methodology covering software production as well as Maintenance; the latter
does not require debugging, but allows adaptation and evolution of systems
by changes to the original specification and replay of developments,
also including:

- use of existing components in new developments: based on Ada packages and
Anna specifications

- formal semantics of interfaces: algebraic specification in Anna related
to formal semantic model

- (validation and) verification: of implementations against specification;
of applicability conditions

- capturing of requirements: as (incomplete) algebraic requirements
specifications

- development of notations with well-founded semantics: multi-language
paraphrasing of Ada/Anna programs, transformation rules, etc.

- reliability of specifications: formal specifications
- specification of sequential and concurrent systems: Ada and extension of

Anna for specification of concurrent systems
- decomposition, integration, compatibility of HW/SW subsystems ... : via

Ada/Anna package specifications
- HW/SW migration: possible based on specification
- system optimization: via optimizing transformations

- representation and transformation tools (major emphasis here), includes
multi-level, attribute oriented paraphrasing on screen

- verification and (validation) tools: verification of Anna Logic and
verification conditions,

- component library support tools: for Ada/Anna program components and also

for transformation rules, scripts, methods and development histories,

- configuration management tools: interface to PCTE for version management etc.

- documentation tools: implicitly, since specifications, transformations,
in fact whole developments are recorded

247



PROSPEC TR A Project

5 State of the Art

Methodological Framework

Although program development by stepwise transformation has attracted consider-
able interest and substantial work has been carried out by various groups (e.g.
Darlington/Burstall, CIP/Munich, PECOS/Barstow, ZAP/Feather, POPART/Wile) no
production-level system to support this method has yet appeared (see "Program
Transformation Systems" by H. Partsch, R. Steinbrbggen, Computing Siprveys ]5:3).

Experiments with prototpe systems showed clearly that the problem of systemati-
cally using a large collection of transformation rules has to be solved. The
problem is to structure the transformation bank in such a way as to reflect the
systematic, goal-oriented reasoning necessary to select a transformation. It
should then be possible to automatically support each development step in an
effective way without abolishing the guiding intuition of the programmer.

The problem of structuring collections of transformation rules combined with
an appropriate strategy for application is related to the work on optimizing
compilers (e.g. PQCC/Wulf). No notation for rule scripts has yet been developed
that combines the elegance of individual rules with efficient applicability.

As concerns specification development, in particular development methods, the
work on CLEAR (putting theories together) by Burstall. Goguen is most relevant
as an attempt to make the specification activity a constructive development
process.

Formal Basis

In the past, considerable progress has been made in the development of a formal
basis for software construction. Denotational semantics, assertion logics,
algebraic specifications, transformational semantics have been major areas of
successful research (cf. Formal Methods Appraisal study for the EC). Practical
outcome of the theoretical work are program support systems connected with
functional programming languages, program verification, specification languages
and prototypers. and program transformation systems. Not all aspects of pro-
gramming and program development, however, are equally well developed. In
particular, the semantics of concurrent communicating programs is a topic of
current research. It seems, however, as if research in this area is just
beginning to converge towards a few basic principles such as observability
concepts for streams of communication actions. Moreover, Hehner and Hoare have
recently proposed methods for specification of such communicating processes.

What is missing at present is a consolidation of the various formal models Into
a formal framework that can serve as a uniform basis for a practical software
development system that provides support for all development phases from the
initial specification to final implementation. The correctness of transforma-
tion rules can then be verified against the formal model framework.

Transformation in Ada/Anna

Some catalogues of transformations have been assembled for various high-level
languages. Of particular interest is the structured approach of the CIP group.
The program development language CIPL is formally defined by transformational
semantics, mapping all constructs in the wide spectrum of the language to an
applicative language kernel that is defined denotationally. These basic trans-
formation rules have an axiomatic nature: compact rules for program development

? ,4



can be derived from them in a formal way.

Most of Anna is defined by transformational semantics mapping elaborate
annotations into simple assertions.

Generative Approach to Program Transformation

The system as proposed needs a generative approach to thp implementation of
transformations. Transformation rules as given by the designers and incremen-
tally added by the programmer will automatically be implemented by an adequate
set of generators.

For a clear interface, several description mechanisms are needed. Firstly, the
corresponence between string and tree representations of programs has to be
described to allow for generation of parsing and pretty-printing. Secondly, the
basic transformation rules as target for the translation of program development
steps have to be supported by a generative system.

State-of-the-art generative techniques for the automatic implementation of
transformers offer-

efficient checking for rule applicability
- efficient restoring of consistency after transformation.

At least the following three systems are relevant:

the MENTOR system at INRIA
- the Cornell synthesizer generator and

the OPTRAN system at Saarbrfcken.

The MENTOR system was designed for (PASCAL)-program development, but has later
on been extended to a generating system (which is also the case for the Cornell
system). Transformation rules must be explicitly "programmed" by the user who
takes care of the collecting of context information and the resolution of
conflicts for rule application.

The Cornell synthesizer generator produces program development tools with much
emphasis on editing. It has no description mechanism for arbitrary program
transformations.

The OPTRAN system is the basis for the work done in the PROSPECTRA project. It
has been designed to provide generative support for transform-ations on pro-
grams represented as attributed trees. It contains generators for efficient
tree pattern matching and attribute reevaluation. The tree pattern matcher
generator works incrementally and thus allows for addition of rules at any
time. It also provides for transformation scripts ("T-units"). i.e. collections
of transformation rules with an application strategy. So far, these have only
been implemented in a rudimentary form.

OPTRAN was designed for batch mode application (apply rules from a given set as
long any rule is applicable, restricted only by a user supplied strategy),
while MENTOR and the Cornell synthesizer offer an interactive user interface.

249



PROSPEC TR A Project

User Interaction

The development of powerful personal workstation computers with high-resolution
graphic display and pointing devices (e.g. Star, Dorado, Lisa, Lilith) together
with highly interactive user interfaces and program environments (Smalltalk
(TM), Lisa Tool Kit, Modula-2 Environment, XS3) has set new standards of user
interaction. Common features are windows for pursuing distinct activities in
parallel, and uniform commands to edit data, evoke system activities, select
parameters of commands, manipulate windows, etc. Some systemb, e.g. Nievergelts
Modula-2 environment XS3, are even designed by relating user interaction to the
underlying principles of computation. Others su.pport language-dependent genera-
tion of user interfaces (MENTOR, Cornell Program Synthesizer, ALOE/Feiler).

Important aspects are not covered by today's systems. Firstly, a program sys-
tem, if it is designed according to the principles of modularity and infor-
mation hiding, is hierarchically structured. This means that user commands have
arguments that may result from computations performed on lower levels of the
system. The principles of abstraction and information hiding should be reflect-
ed in the system's ways of guiding user interaction through the levels in the
hierarchy. Secondly, in an interactive system, the user manipulates the inter-
nal state of the system by inputing new data or evoking commands. The presenta-
tion of the resulting system state (input parameters of commands, results of
calls, internal module state) is, however, the responsibility of each single
module. Uniformity of externally presenting internal data in a way that suits
their intuitive meaning is therefore not guaranteed. (In the following we will
call the process of external representation of internal data paraphrasing.) An
interactive framework for a program system should therefore provide for mecha-
nisms that generate paraphrasers for internal representations of data from
high-level descriptions. These descriptions have to be based on the general
principle of computation that underlies the various system activities.

Generators for Editors and Paraphrasers

As far as syntactic issues are concerned, the generation of syntax oriented
editors from context-free grammars is well-understood. Editing of semantic
information represented in terms of attributes in abstract syntax trees is not
supported by conventional systems, in particular, if attributes may themselves
contain program fragments of other languages represented as trees. For example,
an Ada/Anna program would contain Anna fragments to annotate the underlying Ada
program as tree attributes of this Ada program. An important technical issue is
that of incrementally updating the formatted representation during editing.
Techniques of incremental attribute evaluation as employed in the Cornell
Program Synthesizer seem to be sufficiently powerful to deal with this problem.

Editing of trees is always closely connected to paraphrasing (formatting), as
the user shall be allowed to act (select nodes and operations) in terms of an
intuitive external representation of the tree - its paraphrased version. Yet it
is a separate logical process. The way in which editing commands are recognized
as user activation of input devices, or in which edited trees are paraphrased
on the screen by evoking operations of a virtual I/O-driver is completely
independent of the editing process itself. This conceptual distinction is not
clearly made in existing editor/formatter generators (MENTOR, Cornell Program
Synthesizer). As a concequence, traversing of trees to select nodes can be
quite awkward in these systems. On the other hand, decoding of input activities
into editor commands and "encoding" trees into their 2D representation are dual
to each other. A paraphrasing description should therefore contain enough
information to allow the system to generate both the decoder and the encoder
(formatter. paraphraser) in parallel.

250



SVeri fiers

Automatic verification systems do exist but the most successful of these are
not distributed due to severely restricted circulation because of the
commercial or national security considerations resulting from the obvious
benefits in terms of reliability.

Existing systems tend to be designed along the followini lines. Starting from a
given specification and a given program, a verification condition generator
will produce a set of logical expressions whose truth would garantee the cor-
rectness of the program. The processing of these logical expressions is then
accomplished by a theorem prover (perhaps using an algebraic simplifier) in an
attempt to establish the truth of the logical expressions. Failure to do so may
result in changes to the program or to the specification. An iterative process
then commences, culminating hopefully in establishing correctness.

There is general agreement that these early systems had considerable deficien-
cies. partly due to the difficult theoretical problems which dictate that the
verification process cannot be completely automated. Further shortcomings stem
from the fact that the user interfaces were traditionally very poor: should the
theorem prover fail to prove that a verification condition is true, a user
would typically be confronted with an awesome expression which bares little
relation to the original program; small changes to a program would require to
starting the complete verification process again.

The advances of a verifier integrated into the process of program development
by transformation would be several. Firstly, since verification conditions are
produced by means of a sequence of transformations and since the system posses-,
ses a mechanism for remembering which transformations have been performed, it
becomes a simple matter to relate errors back to the original programs in a
user-friendly manner. Secondly, an adjustment to one section of the program
will result in the reprocessing of only that section and other affected sec-
tions. Thirdly. theorem provers that interact to enlist the help of the user
offer substantial advantages both in terms of their efficiency and their capa-
bility over alternative approaches.

251



PR OSPEC TRA Project
0

6. Project Description

Before the particular research and development subjects and phases in the
project are described in the work plan (section 7), an overview shall be S
presented here, giving some background and motivation.

6.1 Methodological Framework

The Development Process

Consider a simple model of the major development activities in the life of a
program:

(1) pre-development phase:

ANALYSIS of requirements and informal problem definition

(2) development phases:

SPECIFICATION of the problem (formal requirement specification)

- interface between customer and implementor, the "contract"
- prototype modelling allows informal presentation to the customer
- formalization allows rigorous validation of implementations
- restriction to necessary requirements leaves design choices open

IMPLEMENTATION

by decomposition ("top-down" hierarchy)

design:
definition of a model; specification of components

validation:
of model design specification against interface

* construction:
by (recursive!) implementation of components

* ins talla tion:
of components by integration

by instantiation ("bottom-up")

" design:
selection of pre-fabricated components from stock

" construction:
by specialization / parameterization

* validation:
of instantiated component specification against interface

installation:
of Instantiated component

252



(3) pos t-development phase:

EVOLUTION in response to changes in requirements
- evaluation, inducing changes in requirements
- leads to re-development, starting with changes in the specification
- requires re-implementation, possibly by replay and adaptation of

previous implementations or of previously discarded variants

In a rigorous methodology based on formal specification .and formal validation,
explicit testing of implementations is not required; it is substituted by
verification of correctness. Note, however, that the formal specification needs
to be accepted by the customer. Prototyping is a way to provide for acceptance
tests early in the development process.

Dimensions of Development

In adaptation of the conventional view of a "life-cycle", one can distinguish
several dimensions along which the program development activities take place
(see fig. I):

(1) r ev is i on (global "cycle")

change of a specification/implementation to adapt to new requirements

(2) va r i a t i o n (local "cycle")

alternate implementation for the same interface specification

(2a) d e c o m p o s i t i o n (hierarchy of recursive developments)

specification and implementation of components

(2b) abs trac tion/ins tantia tion (pre-fabrication and use)

generalization/parame teriza tion of components to/from stock

(3) t r a n s Ii t e r a t i o n (orthogonal local "cycle")

transformation, possibly to different language style

* revis ionSSPECIFICATION .,.rvso

variation

IMPLEMENTATION IMPLEMENTATION
by decomposition by irstantiation

trarsliteration

Fig. I Dimensions of Program Development

253



PROSPEC TRA Project 0

Although transliteration is, in a sense, a form of variation of an implemen-
tation, a conceptual difference is made here. Transliteration does not invali-
date previous design decisions as a variation would. It may make the design
more detailed, and translate into a more machine-oriented language style or a
different implementation language. A conventional compilation is a translitera-
tlon in this sense. Similarly, a specification can be transliterated into a
different language style.

As a consequence of this view of development activities, one can distinguish

several relationships between program versions:

- r e v i s o n o f specification/implementation

- v a r i a t i o n o f implementation for fixed specification

- component of decomposed implementation

- i n s t a n c e o f specification/implementation

- a b s t r a c t i o n o f specification/implementation (converse)

- trans Ii te ra tion o f specification/implementation

Development by Transformation

Each transition from one program version to another can be regarded as a
transformation in an abstract sense. It has a more technical meaning here: a
transformation is a development step producing a new program version by applic-
ation of an individual transformation rule, a compact transformation tool, or,
more generally, a transformation method invoking these. Before we come to the
latter two, the basic approach shall be described in terms of the transformation
rule concept.

A transformation rule is a schema for an atomic development step that has ben
pre-conceived and is universally trusted, analogously to a proof rule in mathe-
matics. It embodies a grain of expertise that can be transferred to a new
develcpmcr'.. I'- zplication realizcs this transfer and formalizes the develop-
ment process.

Not only is the program construction process formalized and structured into

individual mechanizable steps, but the validation process is structured as well
and becomes more manageable. If transformation rules are correctness-preser-
ving. then only the applicability of each individual rule need to be verified
step by step. Thus a major part of the validation, the verification of the
correctness of each rule, can be done once and for all. Validation reduces to
verification of the applicability of a rule, and program versions are correct
by construction (w.r.t. the correctness of the original version). The design
activity consists in the selection of an appropriate rule, oriented by develop-
ment goals, for example machine-oriented optimization criteria. Attention is
confined to those portions where further development seems to be worthwhile.

The approach of program development by transformation has its obvious use in
the transliteration activity. The programmer designs a first, high-level,
abstract program version and proves its correctness w.r.t. the specification.
This proof can be expected to be easier than the proof of the final version by
orders of magnitude. The implementor then refines this version step by step
through the application of transformation rules until the development goals are



satisfied. This way. the program may well be transliterated from a recursive
version in an applicative language style via a procedural version with loop
and variables to a final machine-oriented version involving jumps and regis-
ters.

It is likely that the approach will also significantly support the variation
activity by formalizing implementations, and choices thereof, as abstract data
type transformations.

It is less obvious to what extent the transformational approach can be used to
assist the revision activity. Can the development of specifications be formal-
ized by transformation rules? For example the "merge" of two specifications?
This will be a subject of research.

Transformation Rules and Transformation Scripts

The methodology of program development by transformation needs powerful system
support to be realistic, as shall be described below in sections 6.4 to sec-
tions 6.8. The programmer should be able to guide the transformation process
interactively, with full attention to detail. However. explicit application of
a lot of individual rules is much too tedious in general.

One direction for automation is the development of compact transformation tools
that mechanize complex transformations. These may be explicitly programmed for
their task. It is more desirable to generate them from transformation scripts,
that is a description of a collection of transformation rules complemented by a
strategy for their application. The definition of a language for defining
transformation scripts will be a R&D task.

In addition, the support of the design activity in this context, that is the
goal-oriented selection of transformation rules from a library, is an important
.research item. More generally, the long term research goal is to develop trars-
formation methods that relieve the programmer from considerations about in-
dividual rules to concentrate on the goal oriented design activity. Some of
these methods may be quite application oriented, for example to develop pro-
grams with strong concern for properties of concurrency and real time.

The Method Bank

Such transformation methods shall be collected in a method bank. Initially, it
will contain an extendable library of transformation rules and tools that
embody the expertise about the program development process gathered so far. One
can compare it to an encyclopedia for mathematical methods for engineers. It
can not be expected that a universal closed method will be found, just as there
is no single closed formula for the solution of differential equations.

Apart from this general portion of the Method Bank there shall be individual
portions for archiving program versions and histories of previous developments.
Replay of developments may make an adaptation of previous versions possible
during a revision, depending on the nature of the changes. Analysis of develop-
ment histories may also allow a suitable abstraction and generalization of a
development to a method for future use. It will be a matter of research to what
extent this is possible.

255



PROSPEC TR A Project

6.2 Formal Basis

Semantic Foundation of the Programming Methodology

A coherent programming development methodology that employs formal methods such
as specification. transformation, verification has to be based on a common
semantic basis. Such a semantic model framework has to be selected. Its appro-
priateness will have to be demonstrated, as well as extendability to concurrency.
Algebraic specifications have to be embedded into the model. Relations to the
formal semantics of Ada/Anna will be established. Moreover, the correctness of
transformation rules and proof rules will be demonstrated in the model.

Algebraic Specification

Algebraic specifications of data structues, models or theories consist of a
description of a signature (a family of sorts and operation symbols) and of a
number of axioms. Algebraic specifications have proved to be a rather flexible
and powerful tool. The extensive theoretical work in this area has to be
consolidated. An adaptation to the overall program development methodology is
required. The semantics of Ada/Anna constructs. in particular that of "package
specifications" has to be defined in terms of the thus obtained algebraic
model. Further required is the definition of a implementation concept that
provides for the construction and verification of concrete implementations for
algebraic specifications. Moreover. frequently used abstract data types, among
them the predefined Ada types, shall be constructed once and for all.

Concurrency

Concurrent communicating systems add a further dimension to programming. The
possible combinations of communication actions can be combinatorially complex,
errors may in general not be reproduced. Therefore, absence of formal models
and techniques leads to a much higher degree of unreliability in the software
produced. On the other hand. concurrent systems are often embedded in environ-
ments where reliability is of utmost importance (process control etc.). The 0
formal foundation of concurrent systems is much less advanced than that of
sequential programs. Fortunately. progress has been made in this area recently.
There is hope that these results can be applied to formally support a methodo-
logy of concurrent system design.

In the project. existing approaches have to be consolidated and refined. A
conceptual model has to be defined on which specification concepts can be
based. A notation for specification of concurrency has to be defined as an
extension of Anna. Furthermore. the semantics of specialized Ada/Anna con-
structs will be defined in terms of the model, for example restricted forms of
tasks such as monitors, that is those that can be safely developed from speci-
fications. 9

6.3 Transformation in Ada/Anna

A stock of basic Ada/Anna transformation rules and methods has to be the basis
for program development in the system. Some phases and methods of program
development (e.g. recursion removal) are well- understood. Work in these areas
will therefore concentrate on the adaptation of well-known basic transformation
rules and methods to Ada/Anna from other languages. Whereas basic transforma-
tion rules have to be correct in terms of the underlying formal semantic model
of specification or computation, the correctness of derived transformation
rules can be inferred from the correctness of the basic ones. These derived
rules /scripts will then be used in program development by transformation.



b.4 bystem Uverview

SYSTEM TRANSFORMER Ada/Anna
DEVELOPMENT DEVELOPMENT DEVELOPMENT CONTROL

Parser
Generator

Mana rer

1T.3 3.1Attribute Ada/Anna

Evaluation Front End

Generator

14 41Paaprae Virtual
Generator 1 /0 Driver

1.5 2.1

Editor Editor 3 da An2 .

Generator Editor I - - I. . . .. . . . -- _ _ _ CONTROUA
Editor

344

1.6 3.3 4.3/

Generator TrnfresCnrle

3.4

Verifier

2.2 4.4
I Mehod~nk  Library

Metho BankManager

Legend na -*- a generates b

i1-4a is based on b

£A.. Overview of System Components

257



PROSPECTRA Project

6.5 User Interaction with the System

The system as proposed provides for various kinds of ser activity. The princi-
pal goal is to develop and implement a uniform concept of user interaction. As
the methodology for program development in the system will be that of transfor-
ming programs and specifications by applying transformation rules, it seems
natural to view user interaction on each system level as invocation of manipu-
lations on (attributed) trees. It seems that the concept of transformation (as
tree manipulation) can be generalized to all processes in the system initiated
by user interaction, at various nested levels. This view subsumes command
"sequences" in the conventional sense.

Levels of Interaction

A particular system level is. then. characterized by four kinds of objects:

T. A language T of trees specifies the class of trees to which transformations
can be applied on that level.

A- The atomic elements (leaves) A in these trees represent the interface to the
next lower levels in the system. Atomic elements are, therefore, themselves
trees of lower-level languages. Manipulating an atomic object on a level L
then means to enter a lower level L' of the system.

P" The trees on any level have a level specific meaning. This meaning should be
indicated to the user by an adequate paraphrasing of the tree on the two-
dimensional display. Consequently, a specific description of paraphrasing P
is required for each level.

- M- Finally. the class M of admissible tree manipulations on each level is of
particular interest. The paraphrasing description should contain elements
that describe how to present this set of manipulation operations to the ser
in order to provide for guidance in the manipulation selection process.

Fig. 3 depicts the principal schema of each system level.

Tree manipulations on each level fall into two distinct classes according to
the two conceptually different kinds of activities that can take place on each
system level-

Editing

If a user is faced with the development of a program for a new or for a
modified problem. s/he has to input new specifications. program fragments. or
transformation rules to the system. All these data are conceptually regarded as
tree-structured. New trees with possibly new meanings are obtained by editing
already existing ones. There is no semantic relationship between an edited tree
and its original version. Editing is done by evoking a syntax-oriented editor.
The operations of a tree editor can be reduced to the three basic operations
"cut". "copy" and "paste". The L-specific actions of the editor concern the
parsing of format-free linear input only. The editor part of each system level
is therefore uniquely determined by the syntax of the language L and can be
automatically generated (as in MENTOR or in the Cornell Program Synthesizer).
Thus. for the editor part of each level, the class M of tree manipulation
operations is given by the cut/copy/paste scheme. For this scheme. menue
techniques for selecting editing operations are conceivable, apart from
allowing format- free input of linearized tree notations.

258



Class of Tree
Manipulation I
Operations I

7
0/\

Tree /Tree
A / I tree I

/ I manipu- I / \
- - - > l i a t o r -. . . . . .- \

*/ \/ I I / \

I / t I internal
I / - = = = = = =I -.. . . . = = -

V I J V interface
_ _ _ _ V _ _ _ _V _ _

I I I I I I
P Paraphraser N Paraphraser I I Paraphraser J

I (formatter) I I (decoder) I I (formatter) I
I I I _ _ _ _ _ I I

*I I external

V V

/l I \/ __ 1 \

* __ _/ keyboard \ _ /

display mouse display

Fig. 3: Principal Structure of each System Level

T r a ns form i n g

Conceptually different from editing is the activity of transforming trees into
semantically equivalent ones by evoking a transformer. Preserving semantic

* meaning. tree transformatiors have to be sharply distinguished from editing.
although from the user interaction point of view both activities are manipula-
tions of trees and can be evoked and represented alike. (For example in the
SMALLTALK programming environment, the left mouse button is used for selecting
editing operations, whereas the middle one evokes semantically meaningful
operations.)

Interpreting

It is interesting to note that the semantic interpretation of a tree can always
be viewed as a tree transformation as well. The corresponding mathematical
concept is that of a canonical term algebra. It is known that for any algebra

* an isomorhic canonical term algebra exists, where the carriers consist of trees
of the given signature and where operations map an argument tree to a result
tree. Thus. interpretation of a tree in a semantic term algebra means trans-

25-)



PR OSPE C T R A Project

forming the tree into a minimal (congruent) representation. This way, program
development as well as interpretation of "programs" on the various system
levels is reduced to the one concept of tree transformation.

Interpreters of an Ada/Anna program are the specification prototyper, annota-

tion checker. Ada compiler back end, and Ada subset to Pascal translator.

Hierarchy of System Levels

A hierarchy of system levels is anticipated; a subset follows below. We shall
briefly sketch some of the characteristics of these levels. Their detailed
structure and interdependencies are, however, subject of further research. We
have already noted that on each such level editing will have to be distinguish-
ed from transformations. Since editing is standardized, we will in the follow-
ing only mention transformation issues, denoting by M the class of character-
istic transformations on a system level.

Control Level

T= CONTROLA abstract syntax trees
A= atomic commands such as transformation development actions, Ada/Anna

program development actions.
M= interpretation of CONTROLA command trees
P= Menue selection of commands

Transformation Development Level

T= TRAFOLA abstract syntax trees
A: Ada/Anna program schemes as part of transformation rules, applicability
I conditions
M= generation of transformers from transformation rules/scripts
P= pretty printing of TRAFOLA rules, including Ada/Anna templates

Ada/Anna Transformation Level

T= Ada/Anna attributed abstract syntax trees
A= context attributes for (re-) evaluation by transformer
M= class of transformation rules as defined on the transformatior develop-

ment level
P= Pretty-printing of Ada/Anna programs and highlighting templates for •

transformation rule application

This level is itself structured into a hierarchy of sublevels that corres-
pond to different stages in the program development process (e.g. require-
ment specification, design specification, applicative program, imperative
program). Each sublevel has its own characteristic class of transformation 0
rules. It may well turn out that these rules require different collections
of context attributes for formulating applicability conditions. This would
then require to define different but closely related paraphrasing descrip-
t ions.

Applicability Verification Level 

T= applicability conditions
A= Ada/Anna semantic primitives
M= inference rules of predicate logic

260



6.6 System Development Components

Generator Components

Having achieved the reduction of the system's complexity to the few principles
mentioned above, it is now possible to achieve corresponding reduction of the
complexity of implementation. For that purpose, the development of a few basic
generator components is conceived. The development of parameterized or genera-
tive system components is an undispensable concept of tte PROSPECTRA project,
both from a methodological and a technical point of view:

Reducing a systems complexity to a few principles, developing models as formal
abtractions of these principles, and implementing highly parameterized soft-
ware modules as their concrete representations is a generelly accepted princi-
ple in software engineering. This is especially important it the PROSPECTRA
project, since here a system is to be developed whose complexity is orders of
magnitude beyond what can realistically be managed by naive ad-hoc implementa-
tion techniques.

The PROSPECTRA system is a multi-language (Ada, Anna, TRAFOLA, CONTROLA) pro-
gram development environment. Editors, paraphrasers and transformers should,
nevertheless, provide uniform operating principles. This requires that these
modules be based on a uniform mechanism, which then, however, has to be parame-
terized by language descriptions.- On the other hand, such parameterization
increases the flexibility in systems design considerably. Changes in TRAFOLA or
CONTROLA, for example, need then not lead to a redesign of all system modules.
A parameterized module is called a generator, if upon instantiation with an
actual parameter a nontrivial analysis of this parameter is performed to in-
crease the module's performance. In this sense we will distinguish below bet-
ween generators and parameterized system components.

For the PROSPECTRA project it is expected that the development of generators
and their application to produce the corresponding system components will be
much less expensive than developing and programming these system components one
for one by hand. For the basic system (to be developed in the first two project
years), it is planned to develop new components as prototype versions with less
concern for generative aspects to gather experience for the development of the
final system.

Apart from methodological and economic considerations, the program development
environment as envisaged here is a dynamically changing one. It is expected
that during the lifetime of the PROSPECTRA system new expertise in program
development will be gained so that the system must be conceived from the
beginning to allow its incorporation. Technically speaking, the user may input,
at the transformer development level, transformation scripts representing new
development strategies. Subsequently the user at the Ada/Anna development level
can apply these rules. Different transformation rules are usually based on
different kinds of semantic information. Consequently, both the transformer as
well as the incremental evaluator of semantic information must be constructed
to allow for adaptation to changes of semantic rules and transformation rules
in the system. Generator components are the only way to solve this problem, if
acceptable systems performance is to be maintained..

Finally It should be noted that some of the generators to be described below
already exist up to adaptation and integration Into the system (e.g. Parser
Generator) or are presently under construction (initial version of Attribute
Evaluation Generator and Transformer Generator), thereby constituting important
methodological as well as technical contributions prior to project begin.

261



PROSPEC TR A Project

Parser Generator

The Parser Generator generates parsers for context-free languages. A (conven-
tional batch mode) LALR(I) parser generator is available from Universitat des
Saarlandes. Parsers are contained as components in editors for analyzing format-
free input. As part of an interactive editor, possibilities for incremental
parsing are required. The existing parser generator must be adapted for these
purposes.

Tree Manager

A tree manager provides the primitives for constructing, traversing and manipu-
lating abstract syntax trees. The tree manager is parameterized by the descrip-
tion of the syntax of the language, together with its atomic lexical elements.
The tree manager will be used as parts of editors, transformers, and attribute
evaluators. IDL shall be evaluated for adaptation; coherence with DIANA must be
ensured.

Attribute Evaluation Generator

Transformation strategies are expressed by transformation scripts. These in-
clude attribute grammar specifications for the computation of semantic informa-
tion needed during transformation. Different transformation strategies require
different kinds of semantic information. For example, attributes for transfor-
mations on the specification / applicative level will have to be defined. This
corresponds to context information in a conventional compiler front-end. Simi-
larly, attributes for data flow analysis are needed on the imperative level. At
the transformer development level, the user must therefore be able to input new
attribute evaluation rules as part of new tramnsformation strategies. Corres-
ponding attribute evaluators are then generated. An interface to the theorem
prover has to be designed.

The implementation of the attribute grammar concept has to be adapted to the
general system framework. One main problem area concerns the invalidation of
attributation after application of transformations. A transformation may render
the attributation inconsistent w.r.t structure of dependencies and values of
attributes. This causes a need for updating attribute values in between conse-
cutive transformations. For efficiency reasons this re-evaluation of attributes
should be incremental. Considerable research will be required here.

Attribute storage management is crucial for the efficiency of basic level
transformation. Particular care has to be taken for Ada/Anna symbol tables and
attributes of type "set of laws".

Parameterized Structure-Oriented Editor

The complete syntactic description of a language is the parameter of a struc-
ture-oriented editor. Editing is an activity that defines new data (specifica-
tions, programs, transformation rules). There is no semantic relationship
between the trees before apd after editing. In particular, correctness of
static semantics cannot be guaranteed. Therefore, editiors have to call upon
incremental attribute evaluation for reevaluating semantic attributes. Editor
commands are evoked by appropriately interpreting user activation of input
devices (keyboard, mouse). Since the user shall be allowed to act in terms of
the intuitive external 2D representation of a tree, and since this representa-
tion is specified in the paraphrasing description, this decoding is the task of
the paraphraser (cf. below).

2 A2



Manipulation of atomic (lexical) elements of a tree means entering a lower-
level editor. Thereby a user may create a chain of not-yet-completed calls to
different editors. On the screen, the elements of this chain could be represen-
ted by different windows. Selecting a particular window (which is the third
major kind of user activity and which is directly handled by the Virtual I/O-
Driver) would then mean to resume editing on the associated system level.
Whether this view is in fact appropriate for dealing with this aspect of the
system's hierarchy is one of the research topics in the project.

In summary of the above, the editor as required in the project differs from
existing or projected ones in that it must handle attributed trees rather than
parse trees only, that it interfaces cleanly to incremental attribute evalua-
tion, and that it supports a hierarchy of languages to separate the various
system levels. Attributes are, depending on the current focu of user interest,
either viewed as atomic semantic values or have themselves a tree structure
that can be subject to editing operations. Furthermore, depending on the class
of transformation rules, specific attributes of the tree are relevant only,
while others may be invisible at this stage. This notion of attributed trees as
incorporated in the tree manager is central to the planned system. Editors for
such structures do not exist and hence have to be developed as part of the
project.

Paraphraser Generator

At any time, the user of the system sees external ("paraphrased") representa-
tions of the internal attributed trees. As described above, this tree contains
too much information that is relevant at other levels of user interaction only,
at any stage. In order not to irritate the user with irrelevant information, a
level-dependent external tree representation is strictly required. Since parti-
cularly important interaction levels correspond to classes of transformation
rules, and since the system has to allow for adaptation to new transformation
startegies, the tree representation process must be adaptable, to. A paraphra-
ser generator is, therefore, an indispensable component of the final system to
assist the dynamic evolution of the envisaged program development system.

A paraphraser generator accepts descriptions of how to format the attributed
trees as well as the transformation rules of a particular system level. Since
paraphrasing will require to traverse the trees in order to map subtrees to
regions of the display, it seems possible to describe paraphrasing in terms of
attribute grammars which employ the data types of the high-level Virtual 1/O-
Driver in attribute rules. This would not only allow to apply the attribute
evaluator generator for constructing a further system development component,
but also solve the problem of incremental reformatting of trees after transfor-
ma tion.

As the paraphrasing description contains all information of how regions inside
a window correspond to sets of nodes of the internal trees, one would want to
be able to also generate input device decoders from paraphrasing desriptions.
These decoders poll input device activities and interpret these as selection of
particular tree nodes. Thus, at any time, tree configurations consisting of
trees and selected nodes represent the current focus of user concern. Paraphra-
sing descriptions have to contain specifications for highlighting selected
nodes in trees.

263



PROSPEC TRA Project

Transformer Generator

The Interface to the Transformation Description Manager

The proposed program development methodology, the subject language, Ada, the
annotation language, Anna, and existing standardized representations, e.g.
DIANA, need basic transformation rules with the following properties:

- input and output templates of transformation rules may have a regular
structure, i.e. containing list-of-nodes. Access to list components must be
made possible explicitly, i.e. using indices, implicitly by specifying a
property accessed components must have, or through iteration.

- iteration operators may have to be specified, thereby differentiating bet-
ween depth- and breadth-iteration.

- the domains of template parameters may be restricted by syntactic typing,
i.e. specification by a grammar.

- output templates may contain "free" parameters. Their value in the case of
rule application must be supplied from either the user or a program fragment
library.

A set of rules entered into the system creates a rule library. This rule
library can be extended by adding new rules, combining existing rules, substi-
tuting into existing rules, and changing applicability conditions of existing
rules. The deletion of rules must also be supported. Changes may be caused by
the system designer or result from Anna annotations, in particular from laws of
algebraic data types. It must be possible to enter rule descriptors into the
rule library, containing information about the author of the rule, a version
identification, relations to other rules etc. The rule library has to be de-
signed as part of the library manager containing program development steps.

Management of Transformation Scripts

Transformation scripts realize higher program transformation steps. They con-
sist of sets of basic transformation rules together with a specification of
successorship and history dependence. Each rule may specify a set of rules to
be tried next, after it has been successfully applied, and a node expression
describing where to try. Rule application in executing a script is history
sensitive, e.g. may depend on the previously applied rules.

Language Constructs for Transformation Scripts

The lariquage for the definition of transformation scripts must be powerful and
flexible. In particular, it must contain language constructs for iteration at
one node, exhaustive iteration, conditional iteration, for the specification of
tree walks, for definition of areas excluded from rule application (any rule,
as well rules from a given class).

Translation of Transformation Scripts

Transformation scripts are translated into automata tables which are mapped to
basic tree operations. A library for automata and parts of automata has to be
designed. Operations on this library and on objects in this library must in-
clude entering (i.e. generating) and deleting objects, merging two objects,
optimizing objects under time or space constraints. Consistency of this library
with the library on the description level has to be maintained.

264



b. I ranslormatlon Uevelopment Lomponents

TRAFOL A Editor

TRAFOLA is the language for the definition of transformation scripts. Relations
of successorship, history dependence, and control constructs describe strate-
gies of rule application. Interactive input and modification of transformation
rules is done via a structure-oriented editor. This editor is generated from
the TRAFOLA syntax. The user is responsible for delivering correctness proofs
for edited transformation rules.

Method Bank

The method bank will be the practical outcome of the methodological investiga-
tions about the process of specification and program development. The method
bank relates program and specification development objectives to concrete
transformation rules/scripts. This way, development steps are viewed as a goal-
oriented process to achieve a certain objective. The concrete design and tech-
nical form of this method bank is subject to research in the project.

Initially, the method bank will just consist of a rule library (interfacing to
the Library Manager), that is a set of correct transformation rules and
scripts. The user modifies this rule library with the help of the method bank.
In contrast, to editing, these modifications will preserve correctness of the
rule library. Such modifications are e.g. combinations of rules, substituting
into existing rules, strengthening of applicability conditions, deletion of
rules. The method bank also assists in deriving transformation rules from Anna
specifications. A particular example would be the conversion of an equational
axiom of a specification into a transformation rule. Transformation management
means to transform TRAFOLA programs. Central parts of the method bank might,
therefore, be described in TRAFOLA itself and generated by the transformer
generator.

6.8 Ada/Anna Development Components

Ada/Anna Front End

A front end for a subset of Ada/Anna including the specification, applicative
level and package interfaces shall be developed, that can be used as part of
the Ada/Anna Editor. It will be derived from an existing attribute grammar for
Ada, extended by those parts that are necessary for Anna. Expertise gained from
the existing SYSTEAM Ada front end shall be used in the development of this new
component. As fhr as possible, this front end shall be interactive allowing
incremental re-evaluation of attributes. This will require significant re-
search.

Ada/Anna Editor

The input of new specifications and/or programs at the applicative level of
Ada/Anna is assisted by a specifically instantiated structure-oriented editor.

* As mentioned before, there is no guarantee that editing preserves correctness.
Therefore, static semantic re-analysis of edited Ada/Anna programs Is required
using the Ada/Anna Front End. At this point it is not yet clear to what extend
this analysis can be performed incrementally during editing. Some semantic
attributes will have to be computed incrementally, In particular those which
occur in applicability conditions of transformation rules.

265



POSPEC TR A Project

Transformers

A hierarchy of transformation rule classes will be defined. The classes con-
stitute levels of Ada/Anna transformation components corresponding to program
development phases such as specification, applicative level, mapping to the
imperative level. For these classes, trarsformers are generated. Different
classes of transformation rules require different sets of semantic attributes
in their applicability conditions. Also, the conditions themselves are of
different logical complexity. (For example, low-level transformation rules
specifying machine-independent optimizations such as constant folding would
have applicability conditions that can be checked fully automatically. Trans-
formation rules on the applicative level can depend on algebraic properties
(e.g. commutativity) of operators. These require a substantial amount of theo-
rem proving.)

Other problems that have to be investigated in more detail concern the inter-
faces between different levels, both in the conceptual and technical sense. For
example the fact that different sets of semantic atributes are required for
different rule classes implies that different notions of the semantics of
Ada/Anna constructs exist. Consequently, different external views of Ada/Anna
programs might be useful and should thus be represented by different para-
phrasing. Transformations that transform programs of one level into programs on
the next lower level are particularly interesting. Here, different attribute S
ealuators have to interface to each other.

In its present extent, the PROSPECTRA project concentrates on transformers at
the specification and applicative level and to the imperative level. Transfor-
mers at the imperative level (analogous to transformations in optimizing compi-
lers) and to the machine-oriented ]eve) can be added later when the system is
in operation.

Veri fiers

Theorem provers apply sequences of inference rules to derive theorems from the
axioms of the theory. Inference rules are transformation rules on languages of •
proofs. TRAFOLA, the language for specifying transformation rules, scripts, and
basic operations on sets of transformation rules will be designed to allow for
formalizing knowledge embodied in transformation strategies. Hence the
description of proof strategies is envisaged as one particular application of
the general concept. This opens up ways to generate important components of
theorem provers automatically. Since generated transformers are of the general S
interactive nature pointed out above, it is hoped that such theorem provers can
be better guided by the problem-specific insights of the user.

The Verifier will contain theorem provers for applicability conditions (predi-
cate logic) and for Anna Logic, with appropriate interfaces to transformers.

266 5



6.9 Lontrol Lomponents

Virtua1 I/O Driver

The Virtual 1/O Driver is a PROSPECTRA high-level system interface that maps to
the window manager and input device drivers provided by PCTE or a particular
workstation manufacturer.

CONTROLA Editor and Controller

CONTROLA, a language for formulating control commands, forms the top level of
the system hierarchy. Atomic elements of CONTROLA interface to the various
system components. Command trees are input via the corresponding structure-
oriented editor. Interpretation of a command leads to interaction with corres-
ponding system components. It is conceivable that non-overlapping subtrees of
comand trees can be interpreted in parallel. For this purpose a concept of
multi-tasking in our framework of system activities as tree manipulations would
be desirable.

CONTROLA trees, together with their tree-structured atomic leaves that repre-
sent lower-level system actions, form a complete history for development acti-
vities. Complete re-interpretation of a tree means automatic replay of develop-
ment pocesses.

Library Manager

A library manager has to provide for storing and accessing trees and their
tree-structured atomic elements of all system levels. The system hieLarchy will
probably be mirrored in the library hierarchy. Additional structure will come
from version management and from the application problem structure.

The library manager will interface to a lower level of an object oriented
database provided by PCTE, CAIS or such like. This needs to provide DB-objects
and relationships with attributes (preferably in a typed manner) to implement
relationships of the system hierarchy, versions, and, as far as possible,
information that enables the goal-oriented selection process of the method
bank.

0

267

0



P R O S P E C T R A Project

7 Project Consortium

7.1 Project Structure
0

The partners of the project form the PROSPECTRA Project Consortium. Each
partner is represented in the Consortium by its respective Team Director.
The team director of the prime partner, Universitit Bremen, is the Project
Director.

In the following list, the partners are given in alphabetical order, the
Prime Partner first.

Partners Team Directors

Univeritit Bremen, Bremen, FRG
Prof. Bernd Krieg-BrGckner

Univerutit Dortmund, Dortmund, FRG
Prof. Harald Ganzinger 0

Universitit Pmsau, Passau, FRG
Prof. Manfred Broy

0
Univeritit des Saarlandea, Saarbrncken, FRG

Prof. Reinhard Wilhelm

University of Strathclyde, Glasgow, UK
Prof. Andrew D. McGettrick 0

SYSECA Logiciel, Saint Cloud, F
Ian G. Campbell

SYSTEAM KG Dr. Winterstein, Karlsruhe, FRG
Dr. Georg Winterstein

268



7.2 Contribution of each Partner

7.2.1 Universitlt Bremen

Team

*) Prof. Dr. B. Krieg-Bruckner, team and project director
Dr. B. Hoffmann
(S. Kahrs, B. Gersdorf, 1986)
NN's

Background Contributions and Qualifications

Bernd Krieg-Bruckner has over 12 years of experience in language design,
formal definition and implementation. His activity in IFIP WG 2.4 (Systems
Imlementation Languages) resulted in his participation in the Ada language
design team as a key member. He was a major contributor to the INRIA Formal
Definition of Ada. He is a German representative in the ISO standardization
of Ada, a member of the Language Maintenance Committee of ISO WG Ada, and
has been an active member of Ada Europe in the WG's on Language Review and
Formal Semantics. He is initiator and chairman of the Ada Europe WG on
Formal Methods for Specification and Development (of Ada programs).

Since 1979 he has been working on the design of Anna, a specification
language extension of Ada. This work was started at Stanford University with
Prof. D. C. Luckham and went on as a joint effort, with Dr. F.W. v. Henke
(SRI) and Prof. 0. Owe (UCSD, Univ. of Oslo). Language maintenance and
formal definition of Anna shall continue on an international basis in coop-
eration with the PROSPECTRA Project.

Ada/Anna can be considered as a Wide Spectrum Language based on the work B.
Krieg-Brrckner has done in the SFB 49 at TU Minchen. He was a key member of
the project CIP for ten years. The CIP project is internationally acknowl-
edged for doing fundamental research for the Program Development by Trans-
formation methodology. This work is one of the bases for the PROSPECTRA
project.

An offspring of this work is B. Krieg-Br~ckner's work on source-to-source
translation, started while at UC Berkeley and continued now in a student
project at U Bremen. Front and back ends (to and from Ada) for several high-
level languages are expected as a result of this project by 1986, and shall
be complementary to the PROSPECTRA project.

269



PROSPECTR A Project

C o n t r i b u t i o n o f W o r k by Subject Category

M.1 Methodological Framework

M.1.1 Development by Transformation

M.1.2 Goal Oriented Methods

M.3 Transformation in Ada/Anna

M.3.1 Basic Transformation Rules

M.3.2 Derived Transformation Rules

M.3.3 Basic Transformation Methods

S.3 Ada/Anna Development Components

S.3.3 Transformers

P Project Management

27()



7.2.2 Universitlt Dortmund

Team

Prof. Dr. H. Ganzinger, team director
NN 's

Background Contributions and Qua. lifications

H. Ganzinger has over ten years experience in compiler generation, abstract
data types, formal semantics, and text processing. He is chairman of the
Gesellschaft fur Informatik WG on Language Implementation, and an active

• member of Ada Europe WGs on Formal Semantics and Formal Methods.

Since 1974 he has been working on the design and implementation of compiler
generating systems. He was a key member of the project MUG (direction: Prof.
Eickel) at TU Mtnchen for 9 years. The MUG project is internationally ack-
nowledged for fundamental research on all phases of compiler generation

* including the development of description languages for modular compiler
specifications. Practical outcome of this research have been three running
compiler generators, the last of which includes features for modular compi-
ler descriptions. Here, compilers are regarded as tree transformation
phases, a very relevant point of view for the basic principles of the system
activity in the PROSPECTRA project.

Since 1980 he has been working on algebraic specification of abstract data
types (started while on leave at UC Berkeley). He has developed notions and
proof techniques for implementation selections between parameterized equa-
tional specifications based on concepts of observability. Later on he exten-
ded concepts of modularity and implementation of abstract data types to
algebraic structures (having relations in addition to operations). Practical
outcome of this theoretical work is a new method for modular formal language
semantics and compiler specifications, where modules correspond to fundamen-
tal language concepts and basic compilation techniques.

H. Ganzinger has designed and implemented a powerful text formatting system
(FOAM) on a microcomputer. Its main feature is that text formatters are
generated from high-level descriptions of the text and document structure,
and from specifications of formatting styles. This experience and his cur-
rent work on the implementation of the virtual SMALLTALK 80 machine on a
68000-based micro computer are highly relevant to the work on user interac-
tion and virtual graphic I/O in the PROSPECTRA project.

271



PRO SPECTR A Project

C o n t r i but i on o f W o r k by Subject Category

.S.1 System Development Components

S.1.4 Paraphraser Generator

S.1.5 Editor Generator

S.3 Ada/Anna Development Components

S.3.2 Ada/Anna Editor

S.2 Transformation Development Components

S.2.1 TRAFOLA Editor

S.4 Cont rol Components

S.4.2 CONTROLA Editor

S.4.3 Controller

272



* PROSPECTIR A Project

7.2.3 Univeritlt Pmnau

Team

Prof. Dr. M. Broy, team director
NN's

Background Contributions and Qualifications

* M. Broy has nine years of experience in formal semantics, formal specifica-
tion, and program development by transformation. As a key member of the CIP
project (TU Munchen), he was instrumental in its extensive, internationally
acknowledged research in algebraic specification and transformation, and the
theoretical t-!ckground of concurrency.

* His work at U Passau centers around the formal foundation of programs and
program development in the areas of transformation rules and methods, alge-
braic specification, formal derivation of algorithms, and semantics of
concurrent communicating systems.

Contr ibut ion o f W o r k by Subject Category

M.2 Formal Basis

M.2.1 Semantic Foundation of the Methodology

M.2.2 Algebraic Specification

M.2.3 Concurrency

273



PROSPECT R A Project

7.2.4 Univaraltit des Saarlamnde

Team

Prof. Dr. R. Wilhelm, team director
Dr. U. M6ncke

B. Weisgerber
S. Pistorius
R. Heckmann

Background Contributions and Qualifications

R. Wilhelm has been working on the design and implementation of compiler
generating systems for fifteen years. He was a leading member of the project
MUG at TU Muinchen for six years. The MUG project is internationally acknow-
ledged for fundamental research on all phases of compiler generation.

R. Wilhelm has done internationally acknowledged fundamental research in
attributed tree transformations for more than ten years. The Tree Transfor-
mation Group at Saarbruicken, directed by F. Wilhelm, will bring its impor-
tant expertise in tree transformation techniques into the PROSPECTRA pro-
ject. The group has jointly worked on transformation of programs represented
as attributed trees for about five years. A language, OPTRAN, has been
designed for the description of such transformations, generators have been
implemented fnr efficient tree pattern matching, attribute evaluation and
re-evaluation.

C o n t r i b u t i o . o f Wo r k by Subject Category

S.1 System Development Components

S.1.1 Parser Generator

S.1.3 Attribute Evaluation Generator

S.1.6 Transformer Generator

274

IH I~mHI~lIli lin li
i n

il m l i il~ i l l



7.2.5 University of Strathclyde, Glasgow

Team

Professor A.D. McGettrick, team director
NN's

Background Cont ribut ior s and Qualifications

A.D. McGettrick has held three Science and Engineering Concil (UK) research
grants on aspects of formal methods related to program verification and
specification.

As a member of Ada Europe he has been active mainly in the Formal Methods
Working Group (secretary) but also in the Formal Semantics and Telecomunica-
tion Working Groups. He also joined the group headed by Professor Stephan
Goldsack for the European Commission on specification associated with Ada.

His book on program verification using Ada was written around 1980/1. Many
of the ideas on verification and specification have been further developed
since then through UK research grants and through such mechanism as the Ada
Europe Working Group on Formal Methods. This will form the basis for the
proposed R&D activities.

Cont ribut ion o f W o r k by Subject Category

S.3 A da/Anna Development Components

S.3.4 Verifier

275



7.2.6 SYSECA Logiciel

Team

[an G. Campbell, team director
Christian Fiegel
Dr. Michel Lai
NN's

Background Contributions and Qualifications

lan Campbell has over 19 years of experience in systems software, operating
systems design, and development tools. He is at present the SYSECA project
manager for the Emeraude project to produce an industrially available basis
for advanced, integrated program support environments entitely compatible
with the PCTE defined portable common tool interface.

Christian Fiegel has been responsible for the design of the distribution
mechanisms over the LAN for the Emeraude project and the PCTE project in
collaboration with ICL. Prior to that he developed an object management
system for a language based, integrated environment.

Particular background contributions from SYSECA include the results of
different software engineering environment projects such as:

- Emeraude: French national advanced software engineering environment
base

- PCTE: Basis for a portable common tool environment defined in the
software technology PCTE project of the ESPRIT programme

- Concerto: French telecommunications research laboratory CNET's inte-
grated software development environment.

C o n t r i b u t i o n o f Wo r k by Subject Category

S.2 Transformation Development Components

S.2.2 Method Bank

S.4 Control Components

S.4.4 Library Manager

E Evaluation, Review, Exercises

276



7.2.7 SYSTEAM KG, Karlsruhe

Team

Dr. G. Winterstein, team director
Dr. E. Zimmermann
Dr. P. Dencker
NN's

Background Contributions and Qualifications

G. Winterstein's original research area was formal logics; this is a very
suitable background for the PROSPECTRA project in addition to his practical
work on Ada implementation. He is a member of Ada Europe WG's Formal Seman-
tics, Formal Methods and Implementation (as convenor), also a member of the
EC study group on Ada specification issues (Goldsack).

G. Winterstein was the leader of the Ada implementation team at U Karlsruhe
from 1979 to 1982 when he founded his own company SYSTEAM. The Karlsruhe Ada
implementation was, apart from the NYU operational definiton, the first
complete Ada implementation to become fully operational (for Ada 80). The
Ada compiler is now maintained and upgraded by SYSTEAM and formal valida-
tion for ANSI Ada has been achieved in Nov. 84; back ends are developed by
GMD Karlsruhe (Prof. Goos) and by SYSTEAM. The Karlsruhe implementation was
originally derived from the INRIA Formal Definition of Ada. The INRIA
Abstract Syntax definition was developed into the de facto standard DIANA
by the Karlsruhe team in cooperation with Tartan Labs.

The present front end is derived from an Attribute Grammar for Ada which
will be a basis for developing transformation rules by Universitit Bremen
in cooperation with SYSTEAM.

The experience in compiler generators (a parser generator, attribute grammar
generator, and code generator generator were developed at U Karlsruhe) and
practical generation for realistic languages (Pascal, PEARL, LIS, Ada) and
Ada and DIANA has migrated to SYSTEAM to a large extent. E. Zimmermann and
P. Dencker are two of those who came from U Karlsruhe; their experience in
compiler generation and attribute grammars for Ada is particularly welcome
for the project.

SYSTEAM will provide its Ada compiler for system development. The Ada subset
to Pascal translator developed by SYSTEAM (AdaP system) will be an important
bootstrap tool.

C o n t r i b u t i o n o f W o r k by Subject Category

S.1 System Development Components

S.1.2 Tree Manager

S.3 Ada/Anna Development Components

S.3.1 Ada/Anna Front End

* S.4 Control Components

S.4.1 Virtual I/O Driver

277



The PROSPECTR& Project

(with an emphasis on Verification)

Andrew D. McGettrick

University Of Strathclyde

May, 1986

279



The PROSPECTRA project forms a part of the ESPRIT programme of

the Commission of the European Communities. It is concerned with the

development of a methodology and support system for the production of

correct Ada programs. The project is around 70 man years in size,

lasting 5 years. The partners and main contributers are:

B. Krieg-Bruckner, Universitat Bremen

H. Ganzinger, Universitat Dortmund

M. Broy, Universitat Passau

R. Wilhelm, U. Moncke, B. Weisgerber, Universitat des Saarlandes

A. McGettrick, University of Strathclyde

I. Campbell, SYSECA Logiciel

G. Winterstein and L. Treff, SYSTEAM KG

The project has been under way for just over 1 year. Many of

the fundamental aspects of the project are being researched and it will

not always be possible to provide complete answers about the ultimate

direction of progress. However, we shall outline the main features of

the project and then pay special attention to the verification issues

associated with them. In advance, it should be said that the

'verification' involved does not have the traditional significance; but

certainly algebraic manipulation and theorem proving will be part of

this.

280



1. Background

The motiviation for the project stems from a deep concern about

the methods and techniques used to produce the majority of today's

programs, many of which are to be used for sensitive applications.

Programming is often associated with an undisciplined approach, with

testing methods that are inadequate and with a sense of 're-inventing

the wheel'. In addition truly large systems produce complexity which

is all-but-unmanageable.

A strict methodology for program development is desirable,

together with software support of a sophisticated kind. The proposed

methodology combines and integrates program construction and

verification so that the resulting programs are known to be correct in

the sense that they conform to the initial specification. It does not

cover the earlier phases of analysing requirements nor the formulation

of formal specification; these are seen to be outwith the scope of the

project. However once a formal specification has been obtained the

methodology is rigorous from then onwards.

281



The basis for the PROSPECTRA project is the idea that, starting

from an initial formal specification, it is possible to proceed from

there to a final program by applying a sequence of correctness-

preserving transformations. The idea is not new. The origins of the

project can be seen in the work of the CIP project in Munich [Bauer 85]

where the transformational approach has been under investigation for

several years. However there are substantial differences between the

PROSPECTRA ideas and the CIP ideas. These will emerge as we proceed.

However, at this stage we note that PROSPECTRA is directly concerned

with the Ada language, and indeed the role of transformations and

transformation scripts is seen as being more fundamental.

The Ada/Anna combination provides a convenient framework within

which specification can be described and programs can be written. Thus

it is a wide-spectrum language. The correctness of transformations

needs to be established and this can only be realistically done if formal

definitions abound. Part of the PROSPECTRA activity is to provide a

thorough basis on which to develop all the transformations, and so on.

2. The PROSPECTRA Methodology

Details of the PROSPECTRA methodology and the accompanying

support system can be found in [Krieg-Bruckner 86b] and there is no need

to repeat that detail here. However, we shall provide an outline, to

establish some terms that can be used in the ensuing discussion.

The life cycle of a development activity is seen as consisting

of three main phases: 282



pre-development phase

- when there is an informal problem description and an

informal analysis of requirements

development phases

- consisting of two main parts

SPECIFICATION

when a formal specification of requirements takes

place, so providing the contract with the user

IMPLEMENTATION

when the design specification of components is

provided using a top-down decomposition, and this

is followed by a bottom-up process of composing

pieces of software to provide a working product

post-development phase

- during which evolution takes place in response to changes

in requirements.

Within this framework the requirements specification tends to be

cracterised by being non-constructive, by being a loose specification

at by exhibiting only the necessary requirements. Conversely design

specifications require to be constructive, and to be readily amenable to

islementation. The major challenge is to show how to move from one

farm of specification to another.

283



Within PROSPECTRA, correctness-preserving transformations are

used to accomplish this, and then the construction and verification

activities are combined into one single activity. The only

verification that needs to be performed relates to the applicability

rules associated with the various transformations.

To have to develop programs by having to describe every single

transformation in order would be tedious in the extreme. An important

ingredient of the PROSPECTRA methodology is to look at the development

of a kind of calculus of transformations, whereby groups of

transformations can be described and combined into coherent units.

3. The Support System

Various components will be provided to facilitate the production

of aids to assist development. There will be components

to allow editing of programs, e.g. by inputting new

specifications, program fragments or new transformation rules;

a parameterised structure-oriented editor is used for this

purpose.

0
to perform paraphrasing, i.e. omitting information that is

irrelevant for the purpose at hand (paraphraser generator)

to generate transformers for rules and scripts.

These might be described as the system development components.

284



Other components are provided to assist with the Ada/Anna front-

end, the transformational development and control. A feature of these

is that they will permit development histories to be recorded and

replayed if so required.

4. A Simple Example

A simple example that illustrates the PROSPECTRA methodology is

taken from [Krieg-Bruckner 86a]. This example makes use of the / and

mod operations. These specifications can be phrased as

function "/" (A,B:NATURAL) return NATURAL;

-- where B > 0,

-- I return Q:NATURAL=>

-- Iexists R: NATURAL => R < B and

-- A=B Q+R;

function "mod" (A,B : NATURAL) return NATURAL;

-- where B > 0,

--I return R: NATURAL => R < B and

--I exists Q:NATURAL =>

-- A=B Q+R;

However, here the two functions are specified by means of

characteristic predicates. Yet the two are intimately related and a

style of specification that recognises this results in

285



function "/" (A,B: NATURAL) return NATURAL;

--I where B > 0;

function "mod" (A,B : NATURAL) return NATURAL.

-- where B > 0;

-- I axiom for all A,B : NATURAL :>

-- I A mod B ( B,

-- A B * (A / B) + A mod B;

The challenge is now to move from this specification through a sequence

of correctness preserving transformations to an Ada program.

For the next step it becomes necessary to identify some axioms

that can form the basis of transformation. Consider the conditional

equation

A < B -> A / B 0,

A >= B-> A / B (A - B) / B + 1

and

A < B -> A mod B = A

A >= B-> A mod B = (A - B) mod B

It is then necessary to show that, from these axioms, the

original algebraic specification continues to hold. Effectively a

proof by induction, on the magnitude of A, can be given. For consider

286



A = B 0 (A / B) + A mod B

* Then from these new axioms we can deduce successively that

A = B ((A - B) / B + 1) + A mod B

A = B ((A - B) / B) + B + A mod B

* A - B B * ((A - B) / B) + (A - B) mod B

Al B * (Al / B) + Al mod B

and Al is of smaller magnitude than B. This argument forms the basis

of a proof by induction.

9

From these axioms we can produce the following implementation in

recursive fcrm

function "mod" (A , B : NATURAL) return NATURAL is

begin

if A < B then

• return A;

else

return (A - B) mod B;

end if;

end Omod";

A similar development will produce a recursive version of /.

287



At this point a standard transformation can be invoked, for the

removal of tail recursion:

function F(X : S) return R is

begin

if B(X) then

return T(X);

else

return F(H(X));

end if;

end;

This program schema can be replaced by the iterative equivalent

function F(X S) return R is

VX : S :: X;

begin

while not B(VX) loop

VX := H(VX);

end loop;

return T (VX);

end F;

so producing an iterative version of "mod" (and similarly of /).

288



5. Uses of a Verifier within PROSPECTRA

Within the PROSPECTRA project three major uses can be identified

for the verifier:

in animating or asking questions of an initial formal

specification; for this specification will form the basis of the

entire development and it is essential that it should exhibit

the kinds of properties that are expected.

2. in going from an initial formal specification to an initial

abstract implementation there is a need to check the correctness

of this step

3. in checking the applicability conditions associated with

transformation rules

4. to check the correctneqq of the correctness - preserving

transformation rules.

There is no verifier in the traditional sense - there is no verification

condition generator, for example.

Each of these uses merits considerable investigation. Let us

look at them in turn:

289



(i) in the first a rewrite system, for example, can be used to

animate the specification; alternatively the Knuth-Bendix

algorithm might be applied, as in the REVE (Kirchner 82) system;

or a theorem prover might be employed

(ii) in the second standard catalogues might be used or a more

generative approach might be employed; alternatively other

techniques can be used

(iii) the work to be employed here relates to the degree of

sophistication of the permitted transformations, and is governed

by this

(iv) there is a relationship between correctness-preserving

transformation and the formal definition of the underlying

programming language.

6. Conclusion

0

There is still a great deal of basic research to be carried out

within the PROSPECTRA framework. Indeed this talk may have aired more

questions than answers.

290



It might be observed that, if our methodology and support system

turn out to be powerful enough, the task of producing an automatic

verifier of the more traditional kind will be greatly reduced. For a

verification condition generator can be viewed as a process whereby

transformations are carried out on predicates, the transformations being

determined by the program. Additionally algebraic simplifiers are a

means whereby various axioms are applied, and axioms themselves are

essentially transformations.

It remains to be seen whether the methodology we advocate does

indeed appear to be productive. At the moment very few people would

develop their programs in the manner suggested and clearly a large

educational problem exists. However, at the moment the onus is on us

to provide an environment in which users can comfortably develop their

correct Ada programs.

291



7. References

[Bauer, F.L., et al 85] The Munich Project CIP, Vol. 1 : The Wide

Spectrum Lanaguage CIP-L. Lecture Notes in Computer Science,

Springer 1985.

[Kirchner, C., and Kirchner, H. 82] New Applications of the REVE

System, Centre de Recherche en Informatique de Nancy, France,

1982

[Krieg-Bruckner, B. 86a] Integration of Program Construction and

Verification : the PROSPECTRA Methodology and System,

Universitat Bremen, 1986.

[Krieg-Bruckner, B., et al 86b] Program Development by Specification

and Transformation in Ada/Anna, in Ada : Managing the

Transition, pp 249-258, Ada Companion Series, Cambridge

University Press.

292



PROGRAM DEVELOPMENT BY

S P E C IFICATION AND

* TRANSFORMATION

293



B. Kreig-Brueckner, Bremen

H. Ganzinger, Dortmund

M. Broy, Passau

R. Wilhelm, Saarlandes

A. McGettrick, Strathelydle

1. Campbell, SYSECA LOGICIEL

G. Winterstein and L. Treff, SYSTEAM

294



MOTIVATION

BASIC CONCERN ABOUT METHODS

AND TECHNIQUES USED IN PROGRAMMING

TODAY

UNDICIPLINED APPROACH

INADEQUATE RELIABILITY

RE-INVENTING OF WHEEL

COMPLEXITY ALL BUT UNHARNESSED

295

9



0

OBJECTIVES

TO DEVELOP A STRICT METHODOLOGY

AND APPROPRIATE SOFTWARE SUPPORT

LEADING TO CORRECT (ADA) PROGRAMS

INITIAL FORMAL SPECIFICATION

APPLICATION OF CORRECTNESS

PRESERVING TRANSFORMATIONS

LEADING TO PROGRAMS

PROGRAM CONSTRUCTION AND PROGRAM

VERIFICATION PULLED TOGETHER

296
0



SOFTWARE LIFE CYCLE

PREDEVELOPMENT PHASE

INFORMAL PROBLEM DESCRIPTION
AND ANALYSIS OF REQUIREMENTS

DEVELOPMENT PHASE

0 SPECIFICATION
FORMAL SPECIFICATION OF

REQUIREMENTS TAKES PLACE
LEADING TO "CONTRACT"

IMPLEMENTATION
THE DESIGN SPECIFICATION OF

COMPONENTS IS PROVIDED USING
A TOP-DOWN DECOMPOSITION, AND
BOTTOM-UP PROCESS OF COMPOSING

PIECES OF SOFTWARE

POST-DEVELOPMENT PHASE

EVOLUTION, LEADING TO CHANGES
* IN REQUIREMENTS

297



REQUIREMENTS SPECIFICATION

NON-CONSTRUCTIVE
LOOSE SPECIFICATION
EXHIBITS ONLY NECESSARY

REQUIREMENTS

DESIGN SPECIFICATION

CONSTRUCTIVE
READILY AMENABLE TO

IMPLEMENTATION

HOW ARE REQUIREMENTS SPECIFI-
CATIONS CHANGED TO DESIGN
SPECIFICATIONS?

298



MAIN FEATURES

SPECIFICATION -- FORMAL SPECIFICATIONS
ARE FOUNDATIONS ON WHICH TO BUILD

PROGRAMMING LANGUAGE SPECTRUM
-- ADA/ANNA

SOFTWARE COMPONENTS -- METHODOLOGY
USE OF ADA SUPPORTS THE CONCEPT OF
PACKAGE DEVELOPMENT

TOOL ENVIRONMENT --

CENTRAL CONCEPT IS APPLICATION OF
TRANSFORMATIONS TO TREES

TRAFOLA--LANGUAGE OF TRANSFORMATION
DESCRIPTIONS - SCRIPTS

CONTROLA--COMMAND LANGUAGE

299



function "P" (A,B: NATURAL) return NATURAL
where B > 0,

return 0: NATURAL =>

exists R: NATURAL =>R < B AND

A= B*Q + R;

function "mod" (A,B: NATURAL) return NATURAL;

where B > 0,
return R: NATURAL=> R < BAND

exists Q: NATURAL =>

A=B* Q+R;

UNIQUENESS QUESTION? S

300



function "" (A,B: NATURAL) return NATURAL;

-- I where B > 0;

function "mod" (AB: NATURAL) return NATURAL;

"-I where B > 0;

-" I axiom for all A,B: NATURAL

-A mod B < B,

S --I A=B* (A/B) + A mod B;

301



FOR THE NEXT STEP, ONE WAY FORWARD

IS TO IDENTIFY AXIOMS THAT FORM THE

BASIS OF TRANSFORMATIONS

A < B - A/B =0

A >= B - A/B =(A- B)/B +1

A<B - AmodB=A

A>= B - Amod B=(A-B) mod B

302



A = B* (A/B) + A mod B

A=B*((A-B)/B+1)+A modB

A=B*((A-B)/B)+B+A modB

A - B= B* ((A- B)/B)+A-B mod B

Al= B* (Al/B) + Al mod B

THIS FORMS THE BASIS FOR A PROOF BY

INDUCTION ON THE MAGNITUDE OF A.

303
9q



function "mod" (A,B: NATURAL) return

NATURAL is

begin

if A < B then

return A;

else

return (A- B) mod B;

end if;

end"mod""
50

A SIMILAR DEVELOPMENT WILL PRODUCE A

RECURSIVE VERSION OF I. HOWEVER NOT

QUITE FAIL RECURSION.

304



Given any A, BEN; B > 0 3 Q, R s N such that

A=B * Q+R A 0 R<B
Proof by induction on N where, say, N = max (0, A-B) +1

For the base case N = 1 take ---

Induction step: assume result true for all X, YGI , Y > 0

* with X - Y < N. Take any A,B such that

A-B<N+1

* Let X=A-BandY=B. ThenX-Y<Nandby

induction hypothesis

* X=Y, Q' +R' and 0- R' <Y

* i.e. A=B* (Q' +1)+R' and 0< R' < Y

choose Q = Q'+ 1 and 0 <  R = R'

305



function F (X:S) function F (X:S)

return R is return R is

begin VX :S : X;

if B (X) then begin
return T(X); while not B(VX)loop

else VX : = H(VX);
return F (H(X)); end loop;

end if; return T (VX);

end; end;

function "mod" (A,B: NATURAL) return
NATURAL is

VA: NATURAL: = A;
begin

while VA >= B loop

VA: = VA- B;

end loop;
return VA;

end;

NOTE THE INTRODUCTION OF ASSIGNMENT AND

THE IMPLICATIONS FOR ADA.

306



Procedure EUCLID (A, B: integer; Q,R: out integer);

QDASH, RDASH: integer;

begin

if A < B then

Q: = 0; R: = A;

* else

EUCLID (A - B, B, QDASH, RDASH);

0: =QDASH + 1; RDASH: =R;

end if;

end;

307



SUPPORT SYSTEM

THIS IS RELATED TO THE DIFFERENT
LANGUAGES THAT EXIST

- CONTROLA For uniform system commands

- TRAFOLA For describing transformation rules,
Scripts and Methods

-GENLA For description of systems, tree

description, attribute domains, edit
rules, etc.

-- PA DA For program development

VERIFILA For applicability conditions, theorums
about properties of transformations,

corrections, etc.

HISTORIES CAN BE REMEMBERED AND REPLAYED

308



ROLE OF VERIFIER WITHIN PROSPECTRA

1. to animate or ask questions of an
initial formal specification

term rewriting

Knuth-Bendix
deducing properties, eg. uniqueness,
proving -heorems

* 2. in going from an initial formal specification to
an initial abstract implementation there is a
need to ensure corectness

3. in checking applicablity conditions

syntax only directed

type checked

domain knowledge

309



0

4. to check correctness of the correctness-
processing transformations themselves

based on the formal definition
of a subset of Ada/Anna,

5. to 'discover' programs

theorem prover used to discover
constructive proofs which are then
easily changed into programs

(mathematical induction --

recursive subprograms)

310



CONCLUSIONS

* 1. Much remains to be done ....

2. Need to prove the methodology realistic
(subsidiary project will attempt to apply
this in an industrial setting) ... and to
supply a comfortable environment

3. Automatic verifiers of the traditional kind
not needed if the strict methodology
adhered to. But clearly desirable:

verification condition generator can
be implemented by a sequence of
transformations to predicates

algebraic simplifiers can be
implemented by a sequence of
applications of arithmetic axioms
(transformations)

theorem proven

311



ON 7M USE OFEWMrC SPBCIVI@TOc

FI THE VE IICATI AND VALIATION OF FL TIM SOMOM

Author and Affiliation : Patrick de BONDELI,
CR2A and AEROSPATIALE/Space Division,
FRANCE

Mailing Address : 14, boulevard Jean Mermoz
(air mail exclusively) 92200 NEUILLY-SUR-SEINE, FRA

Phone : 331 47 22 06 14 (Home)
331 34 75 07 83 (Office)
331 47 80 23 31 (Office, before 3-15-1986)
331 47 68 97 97 (Office, after 3-15-1986)

ABSTRACTr

Our purpose is to illustrate, through a simple, but realistic and reusable,
example of Ada package, the use of semantic specifications to implement,
verify, and validate real time software.

The example we consider is an abstract data type (adt) intended to support
a specific kind of inter-task synchronization-communication mechanism,
"BROADCASTING", which is not predefined in the Ada language.

The specifications of this adt consist in three elements

- The Ada package specification.

- Annotations in the package specification which provide pre and
post-conditions for each operation.

- A Predicate-Transition PETRI Net (Pr-T Net) which specifies the
synchrnization-comruication rules enforced by the adt.

This "specification-oriented Pr-T Net" is then developed into an Ada
ibplementation-oriented Pr-T Net" using Pr-T net semantic models of Ada
tasking which come from a previous work we presented in 1983.

Verification and validation then consist in :

- Proving that the "Ada implementation-oriented Pr-T Net" is correct with
respect ot the "Specification-oriented Pr-T Net".

- Deriving from the specifications and executing a test program in order to
double-check the proof.
(Fortunately, this later operation revealed no error when it was actually
performed).

Ada real time program verification - brnial semantics -
Predicate-Transition nets - Specifications - Abstract data types.

313



i - I__-__C-_-ION

Our purpose is to illustrate, through a simple, but realistic and
useful, example, the use of semantic specifications to implement, 0
verify, and validate real time software.

Ada packages provide a good mean of structuring software by separating
the mcdu3_ (package) specification from the implementation details.
But, wher you specify a package in Ada, you give only the syntax and S
static semantics (type of input and output data, ...) of the operations
made available by the package and not their dynamic semantics (what
these operations are supposed to do).

Cn the other hand, verification and validation of a package are only
possible if you can verify and validate the implementation against what
your package and the operations it provides are supposed to do and
compare the theoretical behaviour defined by the semantic specification
to the actual behaviour of the implementation.

%ten only sequential operations are involved, the behaviour of these
operations is well defined by specifying for each operation the
"preconditions", that is the conditions that must hold before the
operation is started, and the "postconditions", that is the conditions
that hold as a result of the operation.
The ANA annotation system (ref. ANNA) does that and also provides
useful annotations during the development of the implementation.

In real time software, many concurrent operations may take place at a
given time and it is necessary to specify the synchronizations and
interactions between them.

Different formalisms may be used to specify these synchronizations and
interactions.
The most comonly used formalisms today and the most thoroughly
investigated by researchers are probably the Temporal Logic (ref. MP82,
BKP84) and the PETRI Nets (ref. PET77, NET80, BRA82).

We have chosen to use the Predicate-Transition nets (or Pr-T nets), a
high level class of PETRI nets (ref. GL79, GL80), for several reasons

" They can be represented graphically ;

" We have, in a previous work (ref. BOND83), given a semantic
definition of the Ada tasking constructs in Pr-T nets.
Other papers giving elements on Ada tasking semantics using PETRI
nets have also been published elsewhere (ref. MZGT85, SC85).
We are therefore able to stay with the same kind of semantic models
(the Pr-T nets) from specification to implementation (in Ada).
Since verification and validation essentially consist in oamparing
the inplemented behaviour to the specified behaviour, it is a great
help to stay with the sane kind of semantic models from specification
to irplementation.

314



We have good reasons to hope, frcm on-going research work (ref. GL83,
PL83, KL84, VM84), that we will be able in a few years to undertake
formal mathematical proofs in many practical cases on this formalism.
However, that is not yet the state of the art today and we will keep
in this presentation a deductive (and less satisfactory) kind of
proof to support verification and validation.

The remaining of our presentation will be as follows

.2 / Rationale and requirements for our example : Package BRADCASTINU.

.3 / A specification for Package BRADCASTING

.4 / An Ada implementation of Package BROADCASTING.

.5 / Verification and validation of Package BRODCASTING:

5.1. Proving the correctness of the implementation against the
specification

5.2. Deriving a test set from the semantic specification

.6 / Conclusions

.Appendix : Predicate-Transition Nets (Pr-T Nets)

2 - RAT[(]OLE AND 13Eo 1SM FM PPKAM BM S1-rnl

In Ada, the only inter-task synchronization mechanism is the
"Rendez-vous" which provides synchronization points ("entries") between
two tasks :

. The "caller" may call an "entry" of the task it wants to synchronize
with and waits until this entry call is "accepted".

.The "accepter" arriving on an "accept" statement for one of its
entries E has the following behaviour :

if no call was issued on E, it waits until a call is issued then it
"accepts" the first (oldest) call, which may involve taking
parameters from it, performing a sequence of statements and returning
parameters.

Cnly when this "accept" is performed, the two tasks (caller and
accepter) can resume asynchronous procpssing.

In real time applications, particularly in OC applications, another
kind of synchronization is quite often useful :
A task has to broadcast a message on a "message-carrier" to an unknown
number of "reoeiving" tasks.

The broadcasting task does not want to wait, no matter if scrm
"receivings tasks are not ready to take the message.

315



" TIhe receiving tasks, when they invoke the "receive" primitive, wait
until a message is present on the message-carrier and then take all
this same message (which still keeps being present on the
message-carrier after that).

" An additional primitive, "Reset", is provided to allow the
broadcasting task to "suppress" the message on the message-carrier
(or "unload" the message-carrier) and force the subsequent receivers
to wait for a new message.

A very co rion example of use of such a style of synchronization in GC
would be a navigation subsystem periodically broadcasting its last fix
to other subsystems.

We will take this BFICADCASTING package, offering the synchronization
type MESSAGE-CARRIER with the three operations BR)ADCAST, RESET,
REIVE as our working exanple.

0

S

316 0



3 - SECIFIOTIN OF PACKAE BPQADChST1M

This specification is given in two parts

. The next page displays the Ada specification including as coments
the pre-conditions and post-conditions of each operation.

The following page displays the Pr-T net giving the synchronization
specification.
Readers who are not familiar with Pr-T nets should carefully read the
appendix and preferably also the basic references on PEIRI nets
(PET77, NETS0, BRA82, GL79, GL80) before proceeding with reading the
remaining of this paper.

Ada Specification of Package BROADCASTING

Generic
type MESSAGE is private; - type of message to broadcast

Package BROADZASTIN is
type MESSAGE CARRIER is limited private;
- The "MESSAGE CARRIERs" are the vehicles for broadcasting messages.
- A MESSAGE CARRIER may be enpty or may carry one single message.
- It is initially empty.
procedure BROADCAST (MESS : MESSAGE; CARRIER : in out

MESSA GCARRIER) ;
- PRECONDITION : CARRIER is enpty or carries a message.
- POSTXCNDITION : CARRIER carries the message MESS.
procedure RESET (CARRIER : in out MESSAGE CARRIER);
- PRECONDITION : CARRIER is enpty or carries a message.
- POSTCRODITION CARRIER is enpty.
procedure RECEIVE (MESS : out MESSAGE; CARRIER : in out

MESSAGE CARRIER);
- PRECONDITION CARRIER carries a message.
- POSTCONDITION The message carried by CARRIER is assigned to MESS
- without being removed from CARRIER.
- If not PRECONDITION
- then the caller waits until PRECONDITION;
- end if.

Private
- implementation of type MESSAGECARRIER

end 'BROADCASTING;

Note

If the type T of objects to broadcast is limited private (for example,
T is a task type), then one should use an access type on T as the type
MESSAGE:
type ACCESS T is access T;
Package T_B-IADCASSTD is new BROADCASTI? (AOCESS_T);

317



BROADCAST (MESSMESS; RESET (CARRIER: In out
CARRIER-in out MESSAGECARRIER) MESSAGECARRIER)

,4CARRIER, MESSAGE,

caller, MESS NUMB ER OF WAIT!40 TASKS, -eieAREa

4CaIRrCRRIE2I
TB not (MESSAGE /as amd E S G a n

umbr..of-wallng task .0(NUMBER_OF_WAITINGJTASKS 0.aTR
-ecaIler,CARRIERs.

-cCARIERMESS-cCARIER t, 1. CARRIER cSNUMBEROF-WAITING TASKS2 ,
NUMBER OF WAITINGTASKS3- I)ARE, ,0 CARRIER

RECEIVE (MESS: out MESSAGE;
CARRIER: In out MESSAGECARRIER) V.., CARRIER,MESSAGE,

-ecaller,CARRIER3,. NUMBEROF_WAITING TASKS3.

not MESSAGE /at and
(NUMBER OF WAITINGTASKS /z0

TRi NUMBEROFWAITING TASKS:.

NUMBER OF WAITING TASKS .1

-ccaller, CARRIERAI

TR21 F denotes a "nil" value.

MESS = r MES A; RMES

Abstract data type -BROADCASTING

Synchronisation Sp2ecification

318



The properties defined by this Pr-T net are the following:

a) The four operations TB, TRS, TR1, and TR2 are indivisible (1 transition each) and
exclusive on a given carrier.

b) The sequence (TR1, TR2) is indivisible if a MESSAGE is present (MESSAGE /=O)
when "RI is fired.

The present property is equivalent to the following:
If TR2 is firable, then none of the transitions TB, TRS, TRI is firable.

c) Procedure BROADCAST loads, with no unbounded wait (without having to wait
anything else than another transition completing its firing), the message MESS onto the
CARRIER.

This property is established as follows:

- if TB is fired, then the place PCARRIER gets MESS in its message field (trivial)

- If TB has a token in its input place, then TB is firable after a finite delay (i.e without
having to wait possible delivering of tokens onto the input places of TRS and TR I):

* Initially, TB is immediately firable if a token is delivered in its input place
(MESSAGE = o, NUMBEROFWAITING)_TASKS = 0)

- It is impossible that the condition MESSAGE /=€ and
(NUMBER OF WAITING TASKS /=0 indefinitely holds, since TR2 is
then firable.-This is due to thie fact that the following invariant holds (trivial):

* number of tokens on PWAIT = NUMBEROF-WAITING)TASKS

d) Procedures RESET unloads, with no unbounded wait, the message which is present on
the CARRIER passed as a parameter (if a message was present).

The "no unbounded wait" condition is due to the same reson as for procedure
0) BROADCAST.

e) Procedure RECEIVE:
If a message is present, then the content of this message is assigned to the parameter

MESS with no unbounded wait; else the caller waits on PWAIT until a message is
broadcast.

0 This property is a direct consequence of property b), because it is impossible that the
condition MESSAGE /=o and
(NUMBER OF WAITING TASKS /=0) indefinitely holds, but it is possible that
MESSAGE /=0 indefinitely holds (no firing of RESET).

319



The properties defined by this Pr-T net are the following

a) The four operations TB, TRS, TRI, TR2 are indivisible (1 transition •
each)

b) The sequence (TRI, TR2) is indivisible if a MESSAGE is present
(MESSAGE = #) when TRI is fired.

The present property is equivalent to the following :
If TR2 is firable, then none of the transitions TB, TRS, TRI is
firable.

c) Procedure BROADCSAT loads, with no unbounded wait (without having to
wait anything else than another transition completing its firing),
the message MESS onto the CARRIER.

This property is established as follows

- If TB is fired, then the place PCARRIER gets MESS in its message
field (trivial)

- If TB has a token in its input place, then TB is firable after a
finite delay (i.e. without having to wait possible delivering of
tokens onto the input places of TRS and TRI) :

Initially, TB is immediately firable if a token is delivered in
its input place (MESSAGE = i, NUMBER OF _AITING.TASKS = 0)

It is impossible that the condition MESSAGE /= 0 and
(NUMBER.OFAITINGTASKS /= 0) indefinitely holds, since TR2 is
then firable. This is due to the fact that the following
invariant holds (trivial) :
number of tokens on IWIT = NUMBER OF WAITINGTASKS

d) Procedure RESET unloads, with no unbounded wait, the message which
is present on the CARRIER passed as a parameter (if a message was
present).

The "no unbounded wait" condition is due to the same reason as for
procedure BRACAST.

e) Procedure RECEIVE :
If a message is present, then the content of this message is
assigned to the parameter MESS with no unbounded wait ;
else the caller waits on PIT until a message is broadcast.

This property is a direct consequence of property b), because it is 0
impossible that the condition MESSAGE /- f and
(NLMBER OF WAITING TASKS /a 0) indefinitely holds, but it is
possible tat MESSa = indefinitely holds (no firing of RESET).

320



4 - DGU2' ATIO C PACKAGE

The Pr-T net on next page gives the principle of this inplementation.
Place PCARRIER on the specification Pr-T net is developed (implemented)
as a server task type MESSAGECARRIER (central part of the Pr-T net).

Setting the initial token onto place PCARRIER on the specification Pr-T
net is inplemented by sending a <CARRIER name> token when a CARRIER
object is created onto the MESSAGE CARRIER body input place
("MESSAGE CARRIER object creation") and by initializing the local data
(MESSAGE_PRESENT := FALSE; Nt1BEROF_ ITINGTASKS := 0).

Taking off the <CARRIER name> token when a CARRIER object must end as a
consequence of its parent unit termination is inplemented by the couple
of places "PTERAINATE" and "PEND" :
When the parent unit is ready to terminate, it sends a 0 token onto
place "PTEMINATE" ; as a consequence the <CARRIER-name> token is
attracted onto place "PEUD" from where it is eventually taken off by
the terminating parent unit.

Access to place PCARRIER by transitions TB, TRS, TR1, TR2 is
inplemented as :

- access to places Begin TB and End TB by transitions TB.begin and
TB. end,

- access to places Begin TRS and End TRS by transitions TRS.begin and
TRS. end,

- access to places Begin TRI and End Ri by transitions TRI.begin and
TRl . end,

- access to places Begin TR2 and End TR2 by transitions TR2.begin and
TR2.end.

321



Procoda', BROADAST (IISSISSAIE. PrOC8011" IISET
CARM:~ In out PISSAGL-CAPMR). (CAMJER- in Ot PIESSAKLCAMJER).

tcallar.I
TB. Bei caller ASS.CAMlER)TS~oi CAMIER)

(coloer. (caIlor.CAWUERA'SSA6( Colr
CAMJER' FIR

EndI TRS.

begin (caller. B~ggnTBCAJER) TRS

End cale)

TsIIESSA6L-CAMJER object avto tcoller" TRS

tCAJERPjmw

Task body IESSAELCAKR

?SSSA6LPIMSENT : SOOEAN :a FALSE.
MESS :PWSSAGE.
NMR-FWAITNLTASKS:
RATLIPAL 0;~

PE (Collor)

(cllr) PRflKATI Begin (alrcollor. T2 (olr

Begin C.R l"ISSAGELCAMER taO nd carir End
T~~l T"ian Sre? From Parent Unit

End
TmI

(IfS &A outESSAGE. clanS
CAMIER m Mu
lISSAM-CAAIER).

A TmI.TI

TR I. EdW R.&

PrInCtole Of IMIIM~nAD1211 For The Abstract Data TyD. BROACASTING



In terms of PERI net theory, we can say that we have a morphism
between the Specification Pr-T net and the net on previous page
representing the implementation principle with the following
relations :

Specification Implementation Principle

Transition TB . Transitions TB.begin, TB.end
Transition TRS . Transitions TRS.begin, TRS.end
Transition TRI Transitions TRl.begin, TRl.end
Transition TR2 Transitions TR2.begin, TR2.end
Place PCARRIER . Set of places

(Begin TB, End TB, Begin TRS, End TRS,
Begin TRI, End TRI, Begin TR2, End TR2)

The four services for which the MESSAGE CARRIER type tasks are
responsible have the following specification

- TB service :
Pre-condition not (MESSAGEPRESENT and (N-UMER OF WAITINGTASKS

/: 0));
Post-condition : MESS (internal data) := MESS (parameter);

MESSAGE PRESENT := TRUE;

- TRS service :
Pre-condition : not (MESSAGEPRESENT and (NIMEROF_ WITINGTASKS

/- 0));
Post-condition MESSAGE PRESENT := FALSE;

- TR1 service
Pre-condition not (MESSAGEPRESENT and (NtHBER OF&ITINGTASKS

/= 0));
NLMBER OF WAITINGTASKS =X;

Post-condition NUMBER-OF-WAITING-TASKS X + I;

- TR2 service :
Pre-condition : MESSAGE PRESENT and (NUABER OFWAITINGTASKS /

0);
NtMBEROF WAITING TASKS = X /= 0;

Post-condition MESS (parameter) := MESS (internal data);
NLMBER _OF WAITINGTASKS := X - 1;

The comfplete impleentation is given by the next Pr-T net.
WV can see on this net the detail of task body MESSAGE CARRIER
consisting of a "for-ever" loop containing a selective wait with 3 open
alternatives (TB, TRS, TRI services) or 1 open alternative (TR2
service) depending upon the value of predicate
MESSAGEPRESENT and (M_ OF AITIGTSKS /- 0).

On each waiting point, the block or program unit which created tasks of
MESSAGE CARMI type can force these tasks to terminate (one must
therefore have as many instantiations of this part of the net (task
body MESSAGE CA ORI) as blocks or program units creating static tasks
of type MESS3E CARRIE or declaring an ACCESS type on the type
MESAGE

323



This task body is directly inplementable in Ada as a task body
containing a SELECT statement with 4 ACEPT alternatives (the 4
services) and a TERMINATE alternative (see in ref. BCND83 the nominal
Pr-T net model of the Ada select statement).

Following the Pr-T net on next page, we therefore give

- the private part of Package BROADCASTING giving the Ada external
specification of task type MESSAE -CARRIER

- the Package body BROADCASTING containing the body of the three
procedures BROADCAST, RESET, RECEIVE and the task body
MESSAGE CARRIER.

3

9

0

324



060

Jillr
S 0, R

uV



The Ada task type MESSAGE CARRIER specification (private part of
Package BROADCASTING) is the following

task type MESSAGECARRIER is
entry BEGIN-RECEIVE;
- called by procedure RECEIVE to start waiting a message.
entry ND RECEIVE (M : out MESSAGE);
- called by procedure RECEIVE after the call to BEGINRECEIVE
- in order to wait and receive the message into M.
entry BROADCAST (M : MESSAGE);
- called by procedure BROADCAST to broadcast the message M and
- wake up the waiting tasks.
entry RESET;
- called by procedure RET in order to unload the MESSAGECARRIER
- which consequently is empty.

end MESSAGECARRIER;

326



Package body BROADCASTING is the following

Package body BROADrASTING is
task body MESSAGE CARRIER is

MESSAGE PRESENT : BOOLEAN := FALSE;
MESS : MESSAGE;
NUMBER OF WAITING TASKS : NATJRAL := 0;

begin
loop

select
when not (MESAGEPRESENT and (NUMBER OFWA.ITINGTASKS /=
0)) =>
accept BROADCAST (M : MESSAGE) do

MESS :=M;
end BROADCAST;
MESSAGEPRE := TRUE;

* or when not (MESSAGE PRESENT and (NUMBER OF WAITINGTASKS /
0)) => accept RESET;
MESSAGEPRESENT := FALSE;

or
when not (MESSAGE PRESENT and (NUMBEROFWAITINGTASKS /
0)) => accept BEGINRECEIVE;
NIMBER OF WAITING-TASKS := NUMBER OF WAITING TASKS + 1;

or
when MESSAGE PRESENT and (NUMBER OF W@ITINGTASKS /= 0) =>
accept END RECEIVE (M : out MESSAGE) do

M : =ESS;
end END RECEIVE;
NUMBER_OFWAITiTASKS := NUMBER OF _JTITTASKS-I;

or terminate;
end select;

end loop;
end MESSAGECARRIER;
procedure BROADCAST (MESS : MESSAGE; CARRIER : in out
MESSAGECARRIER) is
begin

CARRIER.BROADCAST (MESS);
end BR3DCAST;
procedure RESET (CARRIER : in out MESSAGECARRIER)is
begin
1 CARRIER.RESET;

end RESET;
procedure RECEIVE (MESS : out MESSAGE; CARRIER : in out
MESSAGE-CARRIER) is
begin

CARRIER.BBGINRECEIVE;
CAeRIERE;- RECEIVE (MESS);• end RECEIVE;-

end BROADCASTING;

327



5 - VERIFICATION AND VALIDATION OF PACKAGE BROADCASTING

5.1 Proving the Correctness of the Implementation against the Specification

Obtaining semantic models of Ada tasking features by Pr-T nets has been the
subject of a previous work (ref. BOND83).
These models were used to map the Pr-T net representing our implementation
into the Ada package.
We will assume that this operation was correctly performed and that the Ada
package is a perfect image of the implementation Pr-T net.
We will therefore restrict ourselves to prove the correctness of the
implementation Pr-T net against the specification Pr-T net. To do that,
we must verify that our implementation Pr-T net preserves the a, b, c, d, e
properties which were identified on the specification Pr-T net.

- Notations for Transition Firing Sequences:

TI, T2, T3: firing of T1, then T2, then T3 sequentially.
T1/T2/T3: firing ofT1, T , T3 concurrently.
(TI) excl (2) excl (3) : TI, T2, T3 are mutually exclusive.

- Property a: the four operations TB, TRS, TR I, TR2 are indivisible and
exclusive on a given carrier

Specification Implementation

TB TB 1, TC2, (TB2//TC3)
TRS TRS1, TC4, (TRS2//TC%)
TRI TR 11, TC6, (TRI2//TC7)
TR2 TR21, TC9, (TR22//TC10)

If we consider the sequences above, we can see that (TC2, TC3) excl (TC4, TC5) excl
(TC6, TC7) excl (TC9, TC1O) for a given MESSAGE CARRIER (1 single token is
available). It follows that the above sequences are indeed indivisible and exclusive on a
given carrier after they have fired their first transition (1BI or TRS1 or TRI or TR21)
which is a pure synchronization.

- Property b : if TR2 is firable, then none of the transitions TB, TRS, TRI is
firable.

TC1 must have been fired before TC2 (for TB) or TC4 (for TRS) or TC6 (for TR1) 1
is furable and TC8 must have been fired before TC9 (for (TR2) is firable.
For a given MESSAGE CARRIER, TCI and TC8 are in effective conflict
(same input place PCI and one single token at most on it for given
MESSAGE CARRIER) and their firing condition (MESSAGE-PRESENT
and (NUMBEROFWATING TASKS /=0) holding or not)
is opposite. 0

328



5 - VEIICATIC AND VALIATIN CF PAW= BRONDhSTM

5.1. Proving the Correctness of the Implementation against the
Specification

Obtaining semantic models of Ada tasking features by Pr-T nets has
been the subject of a previous work (ref. BOND83).
These models were used to map the Pr-T net representing our

implementation into the Ada package.
We will assume that this operation was correctly performed and
that the Ada package is a perfect image of the implementation Pr-T

net.
We will therefore restrict ourselves to prove the correctness of
the imrplementation Pr-T net against the specification Pr-T net.

To do that, we must verify that our implementation Pr-T net
preserves the a, b, c, d, e properties which were identified on
the specification Pr-T net.

- Notations for Transition Firing Sequences

T1, T2, T3 : firing of TI, then T2, then T3 sequentially.
TI//'T2//T3 : firing of TI, T2, T3 concurrently.

(Ti) excl (T2) excl (T3) : TI, T2, T3 are mutually exclusive.

- Property a : the four operations TE, IS, ml, TR2 are
indivisible

Specification Implementation

TB B TIl, TC2, (TB2//qC3)

TRS _ nSl, TC4, (TRs2//TC5)
TRI > TP.1I, TC6, (TR12//TIX7)

TR2 ; TR21, TC9, (TR22//ICI0)

If we consider the sequences above, we can see that
(TC2, TC3) excl (C4, TC) excl (TC6, TC7) excl (TC9, TCIO) for

a given MESSAGE CARRIER (1 single token is available).
It follows that-the above sequences are indeed indivisible after
they have fired their first transition (TS! or TRSI or TRIl or
TR21) which is a pure synchronization.

- Property b : if TR2 is firable, then none of the transiticns TB,
TRS, mlI is firable

TCI must have been fired before W2 (for TB) or TC4 (for TRS) or
• TC6 (for TRI) is firable and C8 must have been fired before TC9

(for TR2) is firable.
For a given MESSAGE CARRIER, tCI and TC8 are in effective
conflict (same input place PCi and one single token at most on
it for a given MESSAGE CARRIE) and their firing condition
(SSAGE PRESE2r and (-uzER_cFW3TIN TASKS /- 0) holding or

* not) is oposite.

329



Therefore, for a given MESSAGE CARRIER, the presence of the

token on PC2 and PC3 is mutually exclusive and TC2 (for T), C4
(for TRS), TC6 (for TRi) are not firable (no token on PC2) if
TC9 (for TR2) is firable (the token is on PC3).

- Property c : procedre BDCAST loads, with no unbourxned wait, 0
the message MESS onto the CkIrII

Execution of procedure BROADCAST corresponds to the firing
sequence :
TB 0 TBI, TC2, (TC3//TI2)

This sequence enables one to send the message MESS onto the
CARRIER because :
T TC2 assigns the message MESS (parameter of BODAST) to the
message MESS (internal to the CARRIER)

* TC3 assigns, internally to the CARRIER, MESSAGEPRESENT
TRUE

We still have to show that there is no unbounded wait.

The only possibility of unbounded wait after the firing of TBI
(which is firable as soon as procedure BROADCAST is called) in
the sequence above is on TC2.

As, by hypothesis, TC12 or TC13 are never firable (no token put'
onto PTER4INATE) if the CARRIER is still visible, an unbounded
wait on TC2 can correspond only to a case where the token of the
CARRIER is waiting on the place PC3 (PC.3 is the only place where
a wait is possible besides PC2 and the presence of the token on
PC2 when TBI is fired makes TC2 firable).

We are going to show that it is not possible for the token of a
CARRIER to stay indefinitely waiting on PC3

It is easy to see that each incrementing of
NUMBER OF WAITIN TASKS (possible only by firing TC7)
corresponds to a sequence of transitions : 0
(TCl//rRJ..l), TC6, ((C7, TCll)//(TRI2, TR21)).
Firing such a sequence puts one token on PR3 and PR6.
We finally have :
sum of tokens going onto PR6 = NUMBEROF_1hITINGTASKS for a
given CARRIER.

Therefore, if MESSAGE PRESENT then becomes true for this
CARRIER, TC8 becomes firable and the sum of tokens on PR6, or
about to reach it, for the given CARRIER is equal to
NUJIER OF _AITING TASKS.

We have then firing cycles :
(TC8, TC9, ((TCl0 + TCl1)/frR22))
without any waiting condition on PC3 until
NIMBER CP WAITING TASKS beccmes zero again.
This is due to the fact that, in such a firing cycle
- NUMBER OF-WAITING TASKS is decremented once,
- one tcen is takei from PR6,
- MESSAGE PRESE is never assigned (and remains true) e

therefore 7C8 is always firable (and TC is not) when the
CARRIER token reaches PCi.

330



When NUMBER OF WAITING TASKS beccnes zero again, then it is
TCI, and no longer TC8, which is firable when the CARRIER
token reaches PC1 and it is therefore no longer possible to go
onto PC3.

Finally, we have thus demonstrated the impossibility to reach an
unbounded waiting condition on PC3.

- Property d : proiedure ST unloads, with no unbounded wait,
the message which was present on the CRRER (if a message was
present)

Execution of procedure RESET corresponds to the firing
sequence :
TRS -> TRS1, TC4, (TRS2//TC5).
This sequence ena-bles one to unload the message which was
present on the CARRIER since TC5 assigns MESSAGEPRESENT
FALSE.

The fact that there is no unbounded wait can be shown the same
way it was for procedure BROADCAST.

- Property e : prooedure ROVE : if a message was present, then
the value of this message is assigned, with no unounded wait,
to the parameter NESS, else the caller waits umtil a message is
broadcast

* If callers of RECEIVE were already waiting when the message is
broadcast, we have already seen that they are woken up without
any further wait (cf. the demonstration of property c).
Therefore, we suppose that there is no caller of RECEIVE waiting
when the message is broadcast and loaded onto the CARRIER (which
implies that N134BEROF WAITINMTASKS = 0 for this CARRIER).

Two cases are then possible when procedure RECEIVE (transition
TRl) begins to execute

either the CARRIER token was on PC2 and the following
sequence :7C6, ((7C7, TCII, TCS)//(TRI2, TR21)), TC9, I(TCI0, TC1i)

//TR22)
is immediately firable and TC9 assigns the internal value MESS
to the parameter MESS with no wait ;

or the CARRIER token was not on PC2, but then it could only be
on PC4, PC5, PC6, PC8 or PCl since NUMBEROFWAITINGTASKS was
0 (TC8 not firable) by hyrothesis ;
the CARRIER token was then about to cxme back onto PC2 since
from all the places listed above it could do nothing but come
back onto PC2 with no wait, TC8 being not firable.
This case is therefoce similar to the first one.

331



If the message was not present when procedure RECEIVE
(transition TRll) begins to execute, then : TC8 is not firable
(MESSAGE PRESENT = FALSE) and the CARRIER token can only be on
PC2 or aout to come back onto PC2 (see above).
After TRIl, one can fite - 0
TC6, ((TC7, IC.ll, 7Cl)//(TR12, TR21)) which has the following
consequences :
* the RECEIVE caller waits on PR3,

N -ER OF VU-TING TASKS is incremented by 1 (TC7).

5.2. Deriving a Test Set from the Semantic Specification

From the specification (Ada specification plus the Pr-T net
defining the synchronization specification), we have defined the
five properties a, b, c, d, e which package BROADCASTING must
preserve.
Then it is quite straight forward to derive a program which
successively checks each of these properties with the help of a
good debugger (the program initiates the test actions on an
instantiation of package BRFADCASTING and all the observations are
made through the debugger).

The program on next pages is an exanple of such a test-program for
package BROADCASTING.
All the lines of conent in executable parts of this program
define observations that must be performed through the debugger.

If no convenient debugger is available, then the test program is S
much more complicated because it must perform itself all the
observations which are normally done through the debugger.

Note that such a test set is based solely on the specification
during the test phase, we do not bother with the implementation
details, and we only aim at checking that the package behaves in S
compliance with its specification.

3

332



with BROADCASTING;
procedure BROADCASTING TEST is

subtype LNE 80 is STR!N (1..80);
package LINE_80 BROADCASTING is new BROADCASTING (LINE_80);
use L INE_80_B)A DCASTING;
MY MESSAGE : constant LINE 80 := "I am the message" & (17..80 =>1 );
M C : MESSAGECARRIER;
task type BR2ADCASTER; - broadcasts MYMESSAGE on M_C
task type RECEIVER; - receives a message on M_C
task type RESETER; - resets M_C
task body BROAASTER is
begin

BROADCAST (MYMESSAGE, MC);
end BROADCASTER;
task body RECEIVER is

LOCAL-MESSAGE : LINE 80 := (l..80 => '*);
begin

RECEIVE (LOCALMESSAGE, MC);
null; - breaking here enables one to evaluate LCCAL MESSAGE

end RECEIVER;
task body RESETER is
begin

RESET (M C);
end RESEIER;

begin
A TEST : - tests the property a
declare

BROADCAST_1, BRODAST_2 : BROADCASTER;
RECEIVE i, RECEIVE 2 :-RECEIVER;
RESET17, RESET2 :-RESETER;

begin
- check by a step by step execution using the debugger that none
- of the "TB", "TRS", "TRI", "TR2" operations of the tasks above
- are interleaved and execute the following, while keeping
- checking that, to be sure to terminate this block

delay 1.0;
C TT : - tests the property c
begin

RESET (M C);
BRADCAST (MY MESSAGE, M C);

- check here that MY MESSAGE is present on MC.
end CTEST;

end A TEST;
B TEST : - checks the property b
declare

BROADCAST I, BROADCAST 2 : BROADCASTER;
REXVE_17, REIVE2 :-REXIIVER;

* begin
- check that the sequence (TM, TR2) in REVE_1 and 1r=1VE_2
- is not interleaved with anything else.

null;
end BTET;

333



D TEST : - checks the property d 0
be in

RESET (MC);
- check that the message is no longer present on MC.

RESET (M C);
- check that M C state remains invariant.
end D_ TEST;
E TEST : - checks the property e
declare

RECEIVE 1 : RECEIVER;
begin

delay 1.0;
- check that RECEIVE1 waits on P IT for a message to be
- broadcast.

BROADCAST (MY MESSAGE, M C);
- check that RECEIVE_.LOCAL-MESSAGE receives MYMESSAGE and that
- RECEIVE 1 terminates.
end E TEST;

end BIOA3CASTINGTEST;
pragma MAIN;

6 - (CLSI]S

The main advantages of our verification and validation technique appear
to be the following :

" The same modelling technique (Pr T nets) is kept from specification
to implementation which makes it-easier to prove that the
implementation is correct with respect to the specification.

. A test set can be derived straightforwardly from the specification
without any need to consider the implementation details.

The implementation being proved correct before testing is performed,
only minor bugs (the rare typos which cannot be detected by the Ada
compiler, omission of a line of code, ... ), due to the fact that the
implementation process remains manual, should remain when testing
begins.
The cost of testing should then dramatically drop down.
Ad a matter of fact, no bug was found when w performed the tests
defined in section 5.2. for package BROADCASTING on our Ada
environment.

The main shortcomings are the following :

" The style of proof we presented is not totally satisfactory. We
already said in section 1 that some on-going research works (ref.
GL83, PL83, KL84, W84) make us hope that w will be able in a few
years to undertake more formal mathematical proofs on Pr-T nets in
many practical cases.

. we did not say anything in this paper about verification of 0
specifications themselves. However, it is possible to verify such
properties as coherence and ompleteness n specifications.

334 •



REERCE

- LR : Rference Manual for the Ada Progranmming language

ANSI/MIL-SMD 1815A, January 1983, DoD

-ANNA ANNA
A Language for Annotating Ada Programs.
Preliminary Reference Manual, June 1984
D.C. UCKHAM, F.W. von HENKE, B. KRIEG-BRUDKER, 0. OWE,
Stanford University

- MP82 Z. MANNA and A. PNUELI
Verification of Concurrent Programs : The Temporal Framework,
in :
The Correctness Problem in Computer Science,
International Lecture Series in Computer Science,
Academic Press LONDON, 1982

- BKP84 H. BARRINIER, R. KUIPER, A. PNUELI
Now You May Conpose Temporal Logic Specifications,
Proceedings of the 16th ACM Symposium on the Theory of
Computing, WSHINT , 1984

- PET77 : J.L. PETERSN : PETRR Nets
C Computing Surveys Vol. 9 No 3, September 1977

- NET80 Net Theory and Applications, Proceedings of the Advanced
Course on General Net Theory of Processes and Systems (HAMBURG
1979).
Lecture Notes in Co ter Science n* 84, SPRINGER-VERLAG 1980

- BRA82 : G.W. BRAMS (Collective name)
* t~seaux de PETRI : Theorie et Pratique

Editor : MASSON in PARIS, 1982

- G79 H.J. GDNIC, K. LALnBAL2 :
The Analysis of Distributed Systems by means of
Predicate/Transition Nets,
in Semantics of Concurrent Coputation,
Lecture Notes in Ccmputer Science n* 70, SPRflGR-VERLAG 1979

-GL80 : H.J. GENRICH, K. LALWLAM, P.S. THIAGARAJAN
Elements of General Net Theory, in ref. NET8O

335



0

- BCND83 P. de BCNDELI:
Models for the Control of Concurrency in Ada based on Pr-T
nets
Proceedings of the Adatec-Ada/Europe Joint Conference on Ada -
Edited by the Commission of the European Couunities,
BRUSSELS, March 1983

- GL83 H.J. GENRICH, K. LAUIE A :
S-invariance in Predicate/,Transition Nets, in Application and
Theory of PETRI Nets, Informatik Fachberichte 66,
SPR!NGER-VFRAG 1983

-PL83 A. PAGNCONI, K. LATIENBAL:
Liveness and Duality in Marked-Graph-Like Pr/T Nets, in the
Proceedings of the 4th European Workshop on Application and
Theory of PETRI Nets, Edited by CNRS/1AAS-TULCuSE, 1983

- KL84 R. K7UANSUU, M. LflDQVIST :
Efficient Algorithms for Computing S-invariants for
Predicate/Transition Nets, in the Proceedings of the 5th
European Workshop on Application and Theory of PETRI Nets,
Edited by the MA1W University, DENMARK in 1984

- VM84 J. AMM UN, G. MCMI :
Ccrputation of flows for unary Predicate/Transition Nets, in
the Proceedings of the 5th European Workshop on Aplication
and Theory of PETRI Nets, Edited by the AARHIS University,
DEM in 1984

- MG85 : D. MANDRIOLI, R. ZICARI, C. (GEZZI, F. TISATO
Modeling the Ada Task System by PETRI Nets, in Cbmput. Lang. S
vol. 10 n* 1, 1985

- SC85 : S.M. SHATZ, W.K. CHEM
Static Analysis of Ada Programs using the PETRI Net Model, in
IEEE Proceedings of ISCAS, 1985

336



APPENDIX

PEICATE-"RAJ4SITION FrI S

1 . IN.'TRODUC7210

Predicate-Transitcion Nets were first introduced in (F C79)-  ,They are an

evolution of Place-7ransition Se:s (the classical P MR Nets).

They allow a more concise modelling of systems.

* A place In a Predicate-Tratsltict Net can model several places of aD equivalent

Place-Transitiot Net and ca: have tokens vbinh are "coloured" by tuples of data

vhich can be constants or variables.

• Similarly, transition in a PredIcate-Transition Net can model several trans-

ition of an equivalent Place-Tra.sition Net.

Arcs are valued by tuples of constants and variables defining the set of tokecs

produced or consuned by a transition on a place.

Ot each transition a logical ex;ression specifies the relations involving the

dlfferent tokens vwhich zmst hold to enable the transitiot.

-.his er-ession is onitted if It is niforz y true.

2. PP-.:C AT!--&A."SIlO KE7S . vr.SCSFPLACE-7.PNSITION NETS TC M: F ADI

PROCF.AMS

Many features of ADA indicate that Predicate-Tras it ion Nets are a much more

adequate tool than Place-Transition Nets to model tasking constructs of ArA.

such as:

- Task Types May different task objects can be defined on the sane Task

Type and have concurrent executions. The Predicate-Trans-

ition Nets allow to have a single net for the task body and

to designate each task object by the "colour" of its token.

Similarly, the entries of all task objects in the task type

337



-24-

0

vill share the sane set of places. A entry for a specific

task object vill be dsrInu m hed on these places by the *
colour of its token.

- Selective vait# The vhole phase of selecticn the branch to be executed cAn

be gathered on a si$ge brazch of net. no matter hy& tmy

different sekect bratches are present.

Evez after the branch to be executed has bee: seec:ed tbe

d fferent branches posible cat often keep being gathered

in a single branch of net and eing distinguished only by

the colour of the tokens if the statements in these

branches generate control str-uctures having a co:n net

mode.

3. A ?OR.A DEFNTIAON OF PRED CA7-7RA'SITI0N FS

A good introduction to Predicate-Transitiot Nets cam be foumd in (Ref (LOD).

The follovir.g definitiot is szi±:.ar to that give: in (iLf. _79) or (Ref QL8).

ef!iit or: A predica:e-transition-net (Pr -netl cn-.slsts of the folloi:g

cornstituetts:

1. A d4Irec:ed net (S, T. F) vhere

- S is the set of predCcates ('first-crder' places) Q
- T is the set of ('first-order') transitions "

- F: C(S z T)C(T z S)s the set of arcs ----

2. A structured set V a (C; opl.., Opm;Pi ....... Pt) with operators opi acd

predicates Pj.

3

338



3. A labelling of arcs asselinin to all ele ts of F a for'l suZ of o-tuples

of variables vere a Is the 'arity' of the predicate connected to the eTc.

The zero-tuple indiating a no-argu=ant predicate (at ordinary place) is

denoted by the special symbol 4.

Examples

&2L2.7 e .7 0 :WC d

4. An inscription or trasitions assignitg te sozt elements of T a logical.

forzu.a bui't from ecality, operators and predicates given with V; vari-

ables occurring free in a transition ave to occur at an adjacent arc.

lxamples (Y>

5. A marking of pred cates of S vith -tuples of individual (itens).

6. A natural number K whic'. is a universal bco_-d for the number of copies of

the same ire= which "av occur at a single place' (K may be ca.led Piace
casoacirv).

7. The transittinn ru:e " w'-." which expresses the comon interretation of

predicate-transitior.-tets:

Each element of T represetts a class of possible changes of markings (ordin-

ary tratsitions). Such an indIvisible change consists of removing

-( Q) and adding ( ) copies of items from/to places according

to tbe schemes expressed by the arc labels. It m occur4.henever, for an
assignment of individuals to the variables vhich satisfies the formula

inscripted to the transition, all Input places carry enough copies of proper

items and for no output place the capacity K is exceeded by adding the

0 respective copies of items.

339



-26-

L awple: ?or a structure ((ab,€,); < :- alphabetlcal ordering) and K a 3.

tve of the nine lns: aces of the following transition are ecsbed under the

markini shown on the left side:
(11y,Z) 4 (a,b,c) and (zo,1)--- (b,b,c).

Due to conflIct, hoever, at sost one vilU occur. ?or the aesig-,ent

(xy,z)t.... b,c) the resultig tarkirg is show an the right side.

It

4. SPECIFIC NOTATIONS AN PROPERtES Of TEE NETS VE USE

- Notatcons for tratsiticts:

A: logical ex;ression enablimg the transition.

B B: defines the operation modelled by firing

the transition.

No operaion is attached to this transition.

No operation is attached to this transition

and the logical expression "A" is uniformly

true.

340



-27-

- Notatiocs for arcs:

(a is a short notation for: 7J P

- Initial marking: It is represented by the tokens explicitly figured on the

places.

- Indivisibility of Transitions:

Tramsitions are not all indivisible and may either:

- be indivisible, or:

- model a "purely sequent :l' sequetce of operations, or:

- model a set of operarlots vhich are detailed on stother met.

- Vhen some transitions model sets of operations vhich are detailed o0 other

nets, the folloving notations may be fou.d:

<(a> S? <

/ /
FA> 

i <> f ?

- SP ldset of places vhich Is further detea)Won aoother net.

- There are, on another more detailed net, arcs joining: A to the places o

SP, I to the places of SP, B to the place P.

Place Capacity: In our models, the places are supposed to have a capacity

large enough to be never reached by tokens present on the places. Therefcre

we do not consider the place capacity.

341



ON THE USE OF SEMANTIC SPECIFICATION

FOR THE VERIFICATION AND VALIDATION

OF REAL TIME SOFTWARE

Patrick de Bondeli

CR2A

AEROSPATIALE/Space Division

FRANCE

343



PURPOSE OF THE PRESENTATION

ILLUSTRATE THROUGH A SIMPLE
BUT REALISTIC EXAMPLE THE USE
OF SEMANTIC SPECIFICATIONS TO 0
IMPLEMENT, VERIFY AND VALIDATE
REAL TIME SOFTWARE.

3

344



BACKGROUND

ADA PACKAGES
-~ OBJECT

+ SEMANTIC SPECIFICATIONS ABSTRACT DATA TYPE
ADDED TO THE
ADA PACKAGE SPECIFICATIONS

EALGEBRAIC ABSTRACT DATA TYPES
PRE/POST CONDITIONS
(ANNA ...)

ARE NOT ABLE TO SPECIFY:

ANOTHER FORMALISM • INTERACTIONS/SYNCHRONIZATIONS

IS NECESSARY TO 4 BETWEEN CONCURRENT ACTIVATIONS
OF OPERATIONS

HANDLE THAT
* TIME ORDERING BETWEEN

OPERATIONS

345



DIFFERENT FORMALISMS MAY BE USED TO
SPECIFY INTERACTIONS/SYNCHRONIZATIONS
BETWEEN CONCURRENT OPERATIONS AND
TIME ORDERING; MOST NOTABLY:

TEMPORAL LOGICS

PETRI NETS

OUR CHOICE:
PREDICATE - TRANSITION NETS (PR-T NETS) A HIGH LEVEL
CLASS OF PETRI NETS.

MOTIVATIONS FOR THIS CHOICE:

-- GRAPHICAL REPRESENTATION
--[PREVIOUS WORK GIVING AN OPERATIONAL SEMANTICS

OF ADA TASKING IN PR-T NETS

WE ARE ABLE TO USE PR-T NETS FROM SPECIFICATION
TO IMPLEMENTATION (IN ADA)

GREAT HELP FOR VERIFICATION BECAUSE
DEFVERIFICATION D COMPARE (SPECIFIED BEHAVIOUR,

J IMPLEMENTED BEHAVIOUR)

EASIER WHEN BOTH TERMS USE THE
SAME FORMALISM.

-- PR.OOF MECHANISMS ON PETRI NETS ARE IMPROVING

346



CONTENTS FOR THE REMAINDER OF
THE PRESENTATION

-- RATIONALE AND REQUIREMENTS FOR OUR EXAMPLE:
PACKAGE BROADCASTING

-- A SPECIFICATION FOR PACKAGE BROADCASTING

-- AN ADA IMPLEMENTATION OF PACKAGE BROADCASTING

0 -VERIFICATION AND VALIDATION OF PACKAGE BROADCASTING:

PROVING THE CORRECTNESS OF THE
IMPLEMENTATION AGAINST THE SPECIFICATION

• DERIVING A TEST SET FROM THE SEMANTIC
SPECIFICATION

CONCLUSIONS

3

347



RATIONALE AND REQUIREMENTS FOR
PACKAGE BROADCASTING

CALLER ACCEPTER 0

• Task ACCEPTER is

• entry E;
-- BeforeCall; End ACCEPTER;

ACCEPTER.E; Task body ACCEPTER is
-- AfterCall; Begin

• -- Before-Accept; 0

• accept E do

• -- Handlecritical_

-- part ofthecall;

end E;

End ACCEPTER;

-S

<ACCEPTER>Bi efore Cal B Iefore Acept
ACCEPTR.E <CALLER>

ACCEPTER.E- <ACCEPTER>

<C - HandleCriticalPart_ACED R..E-_ - of theCall

S<CALLER> <ACCEPTER>

After Call AfterAccept

348



In Real Time Applications, another kind

of Synchronization is also useful:

BROADCASTING

A task has to broadcast a message on a "messagecarrier"
to an unknown number of "receiving" tasks

The "broadcasting" task does not want to wait,

0 no matter if some "receiving" tasks are not ready

to take the message.

The "receiving" tasks, when they invoke the "receive"

primitive, wait until a message is present on the
message-carrier and then take all this same

message (which still keeps being present on the

message carrier after that).

0

An additional primitive "Reset" allows the
0 braodcasting task to suppress the message on

the message carrier (thereby forcing subsequent
"receivers" to wait for a new message)

0

349
0



SPECIFICATION OF PACKAGE BROADCASTING

ADA Specification

Generic
type MESSAGE is private; -- type of message to broadcast 0

Package BROADCASTING is
type MESSAGECARRIER is limited private;

-- MESSAGE_CARRIERs are the vehicle for broadcasting messages.
-- A MESSAGECARRIER may be empty or may carry one message
-- It is initially empty. 0

procedure BROADCAST(MESS : MESSAGE; CARRIER :in out
MESSAGECARRIER);

-- PRECONDITION: CARRIER is empty or carries one message
-- POSTCONDITION: CARRIER caries the message MESS.

procedure RESET(CARRIER: in out MESSAGECARRIER);
--PRECONDITION: CARRIER is empty or carries one message.
-- POSTCONDITION• CARRIER is empty.

procedure RECEIVE (MESS: out MESSAGE; CARRIER:in out
MESSAGECARRIER);

-- PRECONDITION: CARRIER carries one message.
-- POSTCONDITION :The message carried by CARRIER is assigned
-- to MESS but it is not removed from CARRIER.
-- If not PRECONDITION
-- then the caller waits until PRECONDITION;
-- end if

PRIVATE
-- Implementation of type MESSAGECARRIER.

End BROADCASTING.

350



CARRIER :vn out MESS AGL.C ARR IER) MESSAGE.X ARRIER)

-CCARRIERIESSACE,

(caller,MESS NUMBER-.OF-.VAIT IIO..T ASKS (cale,CARRIER)
CARRIER)> 4

rnot(MESSAOE /m OanJ not(MESS AGE /- 0'mand TRS
* (MJMBER.IW.YA ITNG.T ASKS /- 0)) (NMBELDNVA IT MItT ASKS /- 0))

wcailerAR )1 N (coalr ,C ARR ER>

<CARRIER ,MESS
NUMBER-F-ATIrI..ASKS> 'CARRIER,C'0> PCARRIER

* RECEIVE (MESS: out MESSAGE;*
CARRIER: in out MESS AG-C ARR IEP)

NUMBER-M-WL AIT hIG... ASKS>
(caller ,CARRIER>

not(MESSAGE /- ('and
(NLN-SER..DF-.A IT ING-.T ASKS /- C))

N MEROF-YA nIT M.T ASKSz
O@ E N BLR...OFV .AITI4O.T ASKS +1

'fcaler,CARRIER> PVAIT*

MESS AGE/uQ
- - ~denotes a "ni1 volue.

* MESS -MESSAGE;
NUMER..OFV.WAITVI0-...TSS :x
NUMEEL.OV.R-.-VAITING-.TASKS-1;

(cller .ARRE RMESS),

Abstact dvtay-QQA.CASTINi
* ~Synchronisation Specification

351



The properties defined by this Pr-T net are the following:

a) TB, TRS, TR1, TR2 are indivisible (1 transition each) and exclusive

(because each one takes the token from place PCARRIER).

b) (TR1, TR2) is indivisible if MESSAGE/=¢ when TR1 is fixed.

i.e.: if TR2 is fixable, none of hte TB, TRS, TR1 is fixable.

c) Procedure BROADCAST loads, with no unloaded wait,

the message MESS

onto the CARRIER:

-- if TB is fixed, then PCARRIER gets MESS in its message field

-- if TB has a token in its input place, then it is fixable after a finite delay.

• Initially TB is immediately fixable if a token is delivered

in its input place

*It is impossible that the condition:

(MESSAGE/=¢) and (numberofwaiting_tasks/=O)

indefinitly holds since TR2 is then fixable because always

number of taken on PWAITS=numberof.waiting_tasks

d) Procedure RESET unloads, with no unbounded wait, the message

which was present on the CARRIER

e) Procedure RECEIVE:

If a message is present, then the content of this message is

assigned to MESS with no unbounded wait (consequence of b),

else the caller waits on AWAIT until a message Is broadcast.

352



IMPLEMENTATION OF PACKAGE BROADCASTING

PRINCIPLE:

"Unfold" place PCARRIER into a server

task having four entries ;(one for each of

the 4 transitions connected to it) and

"unfold" each of these transitions (TB,

TRS, TR1, TR2) into a call to one of

0 these entries. This principle is

illustrated by the following slide.

353

0= l • =



%^ IC.Ili OUL rx~At-AV.A44Ifr. (CAMIER: in out tESSAMLCAPUER);

(caller.

TO. Begin (co.1ier1tESSCAMER) TUMS. Begin CARRIER)

(caller. ,.'(calhr.CArUER)'MSSAGE) t caller.
CARIER) MR

Begin (caller. begin
To CARIER) TRS

End (caller) \A"W End
h iB PSSAGE.CAMRER object crostion (cller) R

\'caller.CARRIERJ1)

t C A M E Ru.nhnam

Tsk body MESSA6L-CAM~ER
LOCAL DATA:

r[MESSAGL-PRESENT : BOOLEAN FALSE;
MESS : MESSAGE.

- MER-OF...WAITNLTASS:
NATUIRAL :- 0:.

2 CAWRIEPjuwm)

'cale) ITEPED 'caller)

(Caller. T2 (caller.
CARRIER) carrier)

Begin MESSAGL-CAMUER tvak owd EndJ
TRi TWTV2w irl r

End

Procedure RECEIVE R

(MESS: out MESSAGE; caller,1SS>
CARRIER: in out
f'ESSAGE-CARIlER);

TRI. 4TR2.
T BeIn -boo~gn

uller. toC .1w
%M~ER' . CARRIER)

TRI. End .,.' TR2. End oleASC M

Principle Of Imolitmen.tjtjon For The Abstract Data Type -BROACASTING

354



The 4 services for which the MESSAGECARRIER type tasks

are responsible have the following specifications:

-- TB:
PRECONDITION: not (MESSAGEPRESENT and

(NUMBER_OF_WAITINGTASKS/=O));
POSTCONDITION: MESS (internal data):=MESS(parameter);

MESSAGEPRESENT:=TRUE;

- TRS:
PRECONDITION,: not (MESSAGEPRESENT and

(NUMBER_OF_WAITING_TASKS/=O));
POSTCONDITION: MESSAGEPRESENT:=FALSE;

-- TR1:
PRECONDITION: not(MESSAGEPRESENT and

* (NUMBER_OF_WAITING_TASKS/=0));
NUMB ER_OF_WAITING_TASKS=X;

POSTCONDITION: NUMBERWAITINGITASKS:=X+1;

TR2:
PRECONDITION: MESSAGE PRESENT and

(NUMBEROFWAITING TASKS/=O);
NUMBEROFWAITINGTASKS=X/=O;

*. POSTCONDITION: MESS(parameter):=MESS(internal data);
NUMB EROFWAITINGTASKS:=X-1;

355



DETAIL OF IMPLEMENTATION

-- IT IS GIVEN BY THE PR-T NET ON THE FOLLOWING SLIDE.

-- THIS PR-T NET IS DIRECTLY IMPLEMENTABLE IN ADA:

* The MESSAGECARRIER task type specification
gives the private part of Package BROADCASTING

_ The PR-T net gives Package body BROADCASTING.

- NEXT SLIDES

356



01

4 ca _u

0C

0C

*V
0i~ m -

0A

0z

357



The Ada task type MESSAGE CAJMIER specification (private part of
Package BROADCASTING) is the following

task type MESSAGE_CARRIER is ._

entry BEGIN RECEIVE;
- called by procedure REXEIVE to start waiting a message.
entry END RECEIVE (M : out MESSAGE);
- called-by procedure RECEIVE after the call to BEGIN_RECEIVE
- in order to wait and receive the message into M.
entry BROA)CAST (M : MESSAGE);
- called by procedure BR=:CAST to broadcast the message M and
- wake up the waiting tasks.
entry RESEr;
- called by procedure RESET in order to unload the MESSAGECARRIER
- which consequently is empty.

end MESSAGECAUER;

358



Package body BRYWCASTINM is the following :

Package body BROADCASTING is
task body MESSAGE CARRIER is

* MESSAGE PRESENT : BOOLEAN := FALSE;
MESS : MESSAGE;
NUMBER OF WAITING TASKS : NAURAL := 0;

begin
loop

select:
when not (MESSAGEPRESENT and (NUMBEROFWAITINTASKS /
0)) =>
accept BROADCAST (M : MESSAGE) do

MESS : =M;
end BIRaADCAST 7
MESSAGE PRESENT : TRUE;

* or when not (MESSAGE PRESENT and (NUMBEROFWAIITING TASKS /
0)) => accept RESET;
MESSAGE PRESENT := FALSE;

or
when riot (MESSAGE PRESENT and (NUMBEROFWAITIWG TASKS /

* 0)) => accept BEGIN RECEIVE;
NUMBEROF_ WITING-TASKS := NUMBEROFWAITINGTASKS + 1;

or
-,hen MESSAGE PRESENT and (NUMBER OF WAITING TASKS /= 0) =>
accept END RECEIVE (M : out' MESSAGE) do

M := MESS;
* end END RECEIVE;

NUMBER OF WAITING TASKS : NUMBER OF WAITING TASKS-i;
or terminate.;
end select;

end loop.:
end MESSAGE -CARRIER;

* procedure BROADCAMST (MESS : MESSAGE; CARRIER : in out
MESSAGECARRIER) is
begin

CARRIER.BROADZAST (MESS);
end BROADCAST;
procedure RESET (CARRIER : in out MESSAGEC RRIER)is

* begin
CARRIER. }1ESET;

end RESET;
procedure RECEIVE (MESS : out MESSAGE; CARRIER • in out
MESSAGE CARJIER) is
begin

* CARRIER. BEGINRCEIVE;
CARRIER.ND RECEIVE MESS);

end RECEIVE;
end BROADCASTING;

359



VERIFICATION OF PACKAGE BROADCASTING

What is to be verified

Correct mapping of the Implementation PR-T net

to the ADA package can be checked using the S

(BOND83) PR-T net grammar for ADA tasking.

Assumed Correct

Specification Implementation IF Ada package 5
PR-T NET PR-T NET private partand body

TO BE VERIFIED S

S

360



Property a: The Four Operations TB, TRS, TR1, TR2

Are Indivisible

TB -* TB1, TC2, (TB2//TC3)

TRS . TR21, TC4, (TRS2//TC5)

TR1 0,TR11, TC6, (TR12//TC7)

TR2 - TR21, TC9, (TR22/TC10)

Indivisibility after firing the 1st transition

due to the fact that:

(TC2, TC3) excl (TC4, TC5) excl (TC6, TC7) excl (TC9, TC10)

Because one token only is available for these on a given

MESSAGECARRIER.

361

iSmm mm



Property b: If TR2 is Firable, then None of the

Transitions TB, TRS, TR1 is Firable

Taken for a given

MESSAGECARRIER

on PC1

TC1 or TC8 firable,

but only one of them

("Effective Conflict" and opposite condition)

if TC1 fires, if TC8 fires, then:

then (TC8, TC9, TC10) -- > TR2 (TC1, TC2, TC3) -- > TB

are not firable (TC1, TC4, TC5) -- > TRS

(TC1, TC6, TC7) -- > TR1

are not firable.

362



Property C: Procedure BROADCAST Loads, with

no Unbounded Wait, the Message MESS

onto the Carrier

TB --> TB1, TC2, (TC3//TB2)

MESS(CARRIER internal)

:= MESS(parameter);

MESSAGEPRESENT

;=TRUE;

MESS is loaded onto the Carrier

No Unbounded Wait:

0* The only possible wait in (TB1, TC2, (TC3//TB2)) is:

Wait a token on PC2 to fire TC2.

0 TC12 or TC13 cannot fire while the Carrier is still visible
0 0 The only waiting places on the MESSAGECARRIER

state machine are PC2 and PC3.

we must prove that TC9 is eventually firable

* when a Carrier token is on PC3

(no unbounded wait on PC3).

363
0



Proof that TC9 is eventually firable when

a Carrier token is on PC3:

The sketch of this proof is the following:

-- Number of tokens that eventually accumulate on PR6
= NUMBEROFWAITINGTASKS

While not (MESSAGEPRESENT and (NUMBER_OF_
WAITING_TASKS/=O))

the Carrier token cannot reach PC3 (TC8 not firable)

If MESSAGEPRESENT and (NUMBEROFWAITING_
TASKS/=O)
then PC3 is eventually reached by the Carrier token
and we eventually have:
Number of (TC8, TC9, TC10, TC11) consecutive sequences

= Number of tokens on PR6
= NUMBEROFWAITINGTASKS;

-- As TC10 decrements NUMBEROF WAITINGTASKS,
this variable is 0 at the completion of these

NUMBEROFWAITINGTASKS sequences;
we then have:

TC8 not firable --> PC3 not reachable •
TC1 firable

*.TC9 is eventually firable when a carrier token is on PC3

364



Property d: Procedure RESET Unloads, with no

Unloaded Wait, the Message which was

Possibly Present on the Carrier

TRS -- > TRS1, TC4, (TC5//TRS2)

MESSAGE_PRESENT:=FALSE;

4
Procedure RESET unloads the the message

No unloaded wait:

* The proof is similar to that for Procedure BROADCAST

.

365



0

0

Property 3: Procedure RECEIVE: If a Message was
Present, then the Value of this Message is Assigned,

with no Unloaded Wait, to the Parameter MESS,
else the Caller Waits until a Message is Broadcast

-- If Callers of RECEIVE were waiting when the message is broadcast
==> the callers are woken up (cf. proof for property c).

-- If no caller of RECEIVE is waiting when the message is broadcast
==> NUMBEROFWAITINGTASKS=O _

2 cases are then possible when RECEIVE starts (TR11 is firing):

The Carrier token was on PC2
-- If MESSAGEPRESET

=> TC6, ((TC7, TC11, TC8)//(TR12, TR21)), TC9, (TC10, TC11)//TR22)Lt
NUMBEROFWAITINGTASKS

=1 The message is passed

to the RECEIVE caller

If not MESSAGEPRESENT 0

TC6, ((TC7, TCII,.TC1)//TR12, TR21

L-0 NUMBEROFWAITINGTASKS =1

lThe RECEIVE Caller waits on PR3 4

The Carrier token was not on PC2
=>It will eventually return on PC2 because:

NUMBEROFWAITINGTASKS=O => TC8 NOT FIRABLE

366



DERIVING A TEST SET FROM THE

SPECIFICATION

THE TEST SET SHOULD CHECK THAT EACH OF THE

PROPERTIES A,B,C,D,E DEFINED ON THE SPECIFICATION

HOLDS

0 SIMPLEST WAY TO BUILD SUCH A TEST SET:

BUILD A TEST PROCEDURE THAT:
-- Instantiates a package on generic package BROADCASTING
-- Declares an object M_C: MESSAGECARRIER;
-- Creates several tasks that concurrently use M_C

in a manner which aims at testing the desired
properties on MC.

1 * TRANSLATE THE PROPERTIES A,B,C,D,E INTO CONDITIONS
THAT MUST HOLD ON MC INTERNAL STATE AND ON THE
STATE OF THE TASKS WHICH USE MC.

DEFINE DEBUGGER ACTONS TO OBSERVE THESE
0 CONDITIONS AND INSERT COMMENTS IN THE TEST

PROCEDURE EXPLAINING THESE ACTIONS AT THE
PLACE THEY MUST BE PERFORMED.

• EXECUTE THE TEST PROCEDURE UNDER CONTROL OF
THE DEBUGGER AND PERFORM THE OBSERVATIONS
THROUGH THE DEBUGGER.

367



0

NOTES:

WE ACTUALLY BUILT SUCH A TEST PROCEDURE

"BROADCASTINGTEST" AND THE TESTED

PACKAGE REUEALED NO BUG.

A "DEBUGGER" SHOULD, AS IN "BROADCASTINGTEST",

BE ISED TP PBSERUE TEJ BEHAVIOUR OF ALREADY

VERIFIED, AND THEREFORE A PRIORI CORRECT,

PIECES OF SOFTWARE RATHER THAN TO

"DEBUG".

368



CONCLUSIONS

MAIN ADVANTAGES OF OUR V AND V TECHNIQUE:

" THE SAME MODELLING TECHNIQUE (PR-T NETS) IS KEPT
FROM SPECIFICATION TO IMPLEMENTATION

.... > IT IS EASIER TO PROVE THAT THE IMPLEMENTATION
IS CORRECT WITH RESPECT TO THE SPECIFICATION

- A TEST SET CAN BE DERIVED STRAIGHTFORWARDLY FROM
THE SPECIFICATION.

" AS A CONSEQUENCE OF PRIOR VERIFICATION, THE COST
OF TESTING SHOULD DRAMATICALLY DROP DOWN
(ONLY MINOR BUGS SHOULD REMAIN)

3

S

0

369

S



PROGRESS TO REACH AN OPERATIONAL

STATUS IN 1990:

0

REPLACE THE DEDUCTIVE STYLE OF PROOF THAT WAS

PRESENTED BY A MORE MECHANIZABLE ONE, USING THE

LINEAR ALGEBRA REPRESENTATION OF NETS.

(RESEARCH OFFERS REASONABLE HOPE)

IMPLEMENT A GENERAL PETRI NET ENVIRONMENT

OPEN TO THE IMPLEMENTATION OF NEW NET CATEGROIES

AND NEW PROOF ALGORITHMS (A BIG DEAL!)

VERIFICATION OF THE IMPLEMENTATION AGAINS THE

SPECIFICATION IS FINE, BUT VERIFICAITON OF THE

PROPERTIES OF THE SPECIFICATION SHOULD BE CONSIDERED TOO

(NOT A BIG PROBLEM: SHOULD BE A BY-PRODUCT OF THE

REMAINING)

TRY AND MECHANIZE THE IMIPLEMENTATION PROCESS

(A LONG TERM EFFORT, PROBABLY NOT FOR 1990!)

370



$

An Empirical Study of Testing Concurrent Ada Programs

Kuo-Chung Tai and Richard H. Carver

Department of Computer Science
Box 8206

North Carolina State University
Raleigh, NC 27695-8206

Evelyn E. Obaid

Dapartment of Mathematics & Computer Science
San Jose State University

San Jose, CA 95192

Ada is a registered trademark of the US Government - Ada Joint
Program Office

@ This research was supported in part by the Integrated
Manufacturing Systems Engineering Institute at North Carolina
State University

0

371



Abstract

Repeated executions of a concurrent Ada program P with input X may
exercise different sequences of rendezvous and thus produce
different results. Therefore, the correctness of P with input X
cannot be determined by one or more executions of P with input X.
Recently, we have studied an approach, called deterministic
execution, to testing concurrent Ada programs. This approach
uses test cases of the form (X,S), where X is an input and S is a
rendezvous sequence. Such a test case is called an INR test
case.

For a given INR test case (X,S) for P, the deterministic
execution approach determines whether or not S can be produced by
an execution of P with input X and, if so, actually reproduces S.
Our strategy is to transform P into another concurrent Ada
program P' such that any execution of P' with (X,S) as input
reproduces S if and unly if S can be produced by an execution of
P with input X.

In this paper, we describe how to apply the deterministic
execution approach to test several concurrent Ada programs.
Through the discussion of testing these programs, we address the
problems encountered and illustrate how to solve these problems.
The results of our empirical study indicate that the
deterministic execution approach is very effective for testing
concurrent Ada programs.

0

9

372

0



1. Introduction

The high cost of software testing has stimulated substantial
research efforts toward the development of testing techniques and
tools. However. the area of testing concurrent programs has

received little attention EBri73,78]. The conventional approach
to testing a program is to select a set of test inputs and
execute this program with each test input exactly once. This

approach. however, is inappropriate for testing concurrent
programs.

Let P be a concurrent Ada program. An execution of P with some

input involves a sequence of rendezvous, called a rendezvous
sequence, which determines the result of this execution. Repeated

executions of P with the same input, however, may exercise
different rendezvous sequences and thus produce different
results. This can happen due to two reasons. One is that the
relative progress of concurrent tasks in P is unpredictable. The
other is that a select statement in P allows a nondeterministic

selection over several possible alternatives.

Because of the "unpredictable rendezvous sequence" property,
testing concurrent Ada programs has three critical issues which
do not exist in testing sequential Ada programs. The first issue
is that the correctness of P with input X cannot be determined by
a single execution of F with iriput X. Repeated executions of P

with input X may increase the chance of detecting errors in P.
However, even if P with input X has been executed successfully
many times, a future execution of P with input X may still
produce an unexpected result.

The second issue is the reproduction of the rendezvous sequence

(or the result) of an execution of P with input X. Assume that an
execution of P with input X has produced a rendezvous sequence S
with an unexpected result. (S is said to be feasible, i.e, it is
allowed by the implementation of P with input X). In order to

understand how the unexpected result was produced, we would like

to reproduce S and collect certain information. However, there
is no guarantee that S can be reproduced by repeated executions

of P with input X. The problem of reproducing a feasible

rendezvous sequence is referred to as the reproducible testing
problem for Ada. (In a reference to the reproduction of a

feasible rendezvous sequence, the word "feasible" is often
omitted, since it is impossible to reproduce an infeasible
rendezvous sequence.)

The third issue is the determination of whether or not a given
rendezvous sequence is feasible. Assume that an execution of P
with input X has produced an invalid rendezvous sequence S'. (A

rendezvous sequence of P with input X is said to be invalid if it

• is not allowed by the specification of P with input X). After

making corrections to P, we would like to know whether or not S'

is still feasible, i.e., whether or not S' can still be produced

by the modified P with input X. However, even if many executions

* 373



of the modified P with input X have not produced S', we cannot
say that S' is infeasible for the mudified P with input X. The
problem of determining whether or not a rendezvous sequence is
feasible is referred to as the feasibility problem.

To determine the correctness of a concurrent program, two
different approaches can be applied. One approach, called
"repeated execution", is to repeatedly execute a concurrent
program with the same input. The other approach, called
"deterministic execution", is to reproduce sequences of
synchronizations of a concurrent program. The deterministic
execution approach is usually applied to assembly programs and
involves the use of low-level interfaces with the underlying
operating system. Therefore, this approach has been considered
tedious and ad hoc. In [Tai85], it was suggested that the
deterministic execution approach could be applied to concurrent
programs written in a high-level language and could be done so
without having interfaces with the underlying operating system.

To test a concurrent Ada program P, the deterministic execution
approach uses test cases of the form (X.S), where X is an input
and S is a rendezvous sequence. Such a test case is called an
IN_R test case. In order to test a concurrent Ada program with
IN_R test cases, we need to solve both the reproducible testing
and the feasibility problems for Ada. To solve the reproducible
testing problem for Ada, our strategy is to transform a
concurrent Ada program P into another concurrent Ada program P'
such that the reproduction of a rendezvous sequence S of P with
input X requires exactly one execution of P' with (X,S) as input.
In other words, if S is feasible for P with input X, then an
execution of P' with input (X,S) definitely reproduces S. Notice
that this strategy also solves the feasibility problem for Ada
provided that P' is constructed so that if S is infeasible, then
an execution of P' with input (X,S) can never reproduce S.

Recently we have developed three reproducible testing methods,
called RPERMIT, BAR_PERMIT, and BARGPERMIT repsectively, for
three difTerent classes of concurrent Ada programs [Tai86a,b,c].
In this paper, we apply these reproducible testing methods to test
several concurrent Ada programs. Through the discussion of
testing these programs, we address the problems encountered in
reproducible testing and illustrate how to solve these problems.
Also, we show the effectiveness of the deterministic execution
approach for error detection.

This paper is organized as follows. In section 2, the notion of a
rendezvous sequence is formalized and a type of error in
concurrent Ada programs, called a rendezvous error, is defined.
Section 3 shows how to apply the RPERMIT method to test
concurrent Ada programs. Section 4 presents applications of the
BARPERMIT method. Section 5 demonstrates the BARGPERMIT method,
which is a complete solution to the reproducible testing problem
for Ada. Finally, section 6 concludes this paper. Throughout
this paper, it is assumed that the result of an execution of a

374 0



concurrent Ada program depends solely on the input and the
rendezvous sequence of this execution. Also, it is assumed that
a concurrent Ada program executes on a single processor and does
not use interrupts or the time clock.

2. Rendezvous Sequences and Errors of Concurrent Ada Programs

In section 2.1. we provide a formal defintion of a rendezvous
sequence such that the result of an execution of a concurrent Ada
program depends solely on the input and the R-sequence of this
execution. Based on the notion of R-sequences, a type of error
in a concurrent Ada program, called a rendezvous error, is
defined in section 2.2.

2.1 Rendezvous Sequences

An execution of a concurrent Ada program involves a sequence of
starts and finishes of rendezvous. A rendezvous sequence
(R-sequence) is defined as

((C1.E1),(C2,E2),...) (1)
where, Ci (Ei), i>O, denotes the caller (the entry name) of the
ith rendezvous to be started. (An entry name includes the name
of the task owning this entry). An R-sequence may possibly be
followed by a termination indicator denoted by "$". An
R-sequence without an ending "$" implies that the R-sequence is
infinite or it results in a deadlock.

Consider a concurrent Ada program P with input X. Due to the
"unpredictable rendezvous sequence" property, both the
specification and implementation of P may allow different
R-sequences during repeated executions of P with input X. An
R-sequence is said to be valid (feasible) for P with input X if
it is allowed by P's specification (implementation); otherwise it
is said to be invalid (infeasible).

Consider the concurrent Ada program in Fig. 1, called
BOUNDED_BUFFER, for solving the bounded buffer problem with the
buffer size being two. BOUNDEDBUFFER contains three tasks and
does not require any input. Task BUFFERCONTROL provides two
entries DEPOSIT and WITHDRAW and synchronizes the execution of
DEPOSIT and WITHDRAW operations on the buffer such that the items
in the buffer are withdrawn in the order of deposit. Task
PRODUCER (CONSUMER) contains a sequence of three calls to entry
DEPOSIT (WITHDRAW). Let P (C) denote PRODUCER (CONSUMER) and D
(W) denote DEPOSIT (WITHDRAW). According to the specification of
BOUNDED_BUFFER, ((P,D),(P,D),(C,W),(C,W),(PD),(CW),$), denoted
by S', is a valid R-sequence, while
((PD),(PD),(PD),(CW),(CW),(CW),$), denoted by S", is
invalid. According to the implementation of BOUNDEDBUFFER, S'
is feasible and S" is infeasible.

Assume that an execution of BOUNDEDBUFFER has produced the first
two rendezvous in S'. Notice that the entry call statement in

375



PRODUCER producing the fifth rendezvous can be uniquely determined
from PRODUCER and the previous rendezvous. Thus, DEPOSIT (the
entry name of the fifth rendezvous) is also uniquely determined.
In other words, for a feasible R-sequence based on the definition
in (1), (Ci,Ei) can be replaced with Ci. Thus, a feasible
R-sequence can be represented as

(C1,C2, ... ) (2)
where Ci, i>O. denotes the caller of the ith rendezvous to be
started. For the sake of simplicity, in later discussions, an
R-sequence, whether it is feasible or not, is represented using
the definition in (2).

2.2 Rendezvous Errors

Let VAL(P.X) be the set of valid R-sequences of P with input X and
FEA(PX) be the set of feasible R-sequences of P with input X. P
is said to have a rendezvous error if for some input X. VAL(P,X)
and FEA(P,X) are not the same. Thus, a rendezvous error implies
the existence of a valid, but infeasible R-sequence or a
feasible, but invalid R-sequence.

A valid, but infeasible R-sequence of P with input X is an
R-sequence which is allowed by P's specification, but can never be
produced by any execution of P with input X. The existence of
such an R-sequence does not necessarily cause an execution of P
with input X to produce an unexpected result. But such an
R-sequence indicates a discrepancy between the specification and
the implementation of P.

A feasible, but invalid R-sequence of P with input X is an
R-sequence which is not allowed by P's specification, but can be
produced by some execution of P with input X. If such an
R-sequence is produced by an execution of P with input X, the
result of this execution is most likely incorrect. Notice that
if the implementation of P allows an R-sequence resulting in a
deadlock, then this R-sequence is feasible, but invalid. Thus, a
deadlock error is considered to be a rendezvous error.

Errors in P can be classified into two categories: rendezvous
errors and computation errors. P is said to have a computation
error if an execution of P with input X produces a valid
R-sequence, but an incorrect result. The deterministic execution
approach can be applied to detect both types of errors. Based on
the specification of P, we can select both valid and invalid
R-sequences of P with input X. Let S be such an R-sequence. If S F
is valid (invalid), then it should be feasible (infeasible);
otherwise, P has a rendezvous error. The feasibility of S for P
with input X can be determined by exactly one execution of P'
with (X,S) as input, where P' is P transformed according to a
reproducible testing method. If this execution produces S as
the resulting R-sequence then S is feasible; otherwise, if this 0
execution produces a different R-sequence, then S is infeasible.
If S is both valid and feasible, we need to determine the
correctness of the result, since P may have a computation error.

376 •



3. Applications of the RPERMIT Method

The reproducible testing problem for Ada is to reproduce feasible
R-sequences. Consider again program BOUNDEDBUFFER in Fig. 1. As
discussed in section 2.1, an R-sequence of BOUNDEDBUFFER can be
described as

(C1,C2 ... )
where Ci, i>O, is the name of the calling task (PRODUCER or
CONSUMER) of the ith rendezvous to be started.

The basic idea of the RPERMIT method is to transform
BOUNDEDBUFFER in order to control the execution sequence of
entry calls such that an entry call in task PRODUCER (CONSUMER)
is allowed to be issued only after the previous rendezvous has
started and when PRODUCER (CONSUMER) is the caller for the next
rendezvous. A clearer explanation of the RPERMIT method is to
consider that BOUNDEDBUFFER owns a permit for rendezvous, called
R_PERMIT. Before issuing an entry call for a rendezvous, tasks
PRODUCER and CONSUMER must make a request for RPERMIT and wait
until it receives this permit. After starting a rendezvous, the
PRODUCER or CONSUMER task executing the rendezvous must release
R_PERMIT immediately.

Let CONTROL be a task in package R CONTROL which controls the
reproduction of a given R-sequence. Task CONTROL contains an
entry family called REQUEST R PERMIT and an entry called
RELEASE_R_PERMIT. Fig. 2 shows the program BOUNDEDBUFFER
transformed for reproducible testing. Statements in the program
which were inserted or modified for reproducible testing are
indicated by comments beginning with ... ". In tasks PRODUCER
and CONSUMER each entry call statement is replaced with

CONTROL.REQUEST_R_PERMIT(j);
,4 entry call statement;

where j is a unique number assigned to task PRODUCER (j=l) and
CONSUMER (j=2). In task BUFFERCONTROL, each accept statement

accept E(...) do

end E;
is transformed into

accept E(...) do
CONTROL.RELEASER_PERMIT;

end E;

Except for the first rendezvous, task CONTROL accepts a call to
entry REQUEST_R_PERMIT(j) only after the RELEASE_R_PERMIT call
for the previous rendezvous has been accepted and when task j is
the calling task for the next rendezvous. After the acceptance of
a call to entry REQUEST_R_PERMLT(J), task CONTROL is waiting to
accept a call to entry RELEASE_RPERMIT, which must come from the
task executing the rendezvous initiated by task j. An
implementation of task CONTROL was given in [Tai86a] and is
omitted here.

377



To illustrate the effectiveness of the deterministic execution
approach for detecting errors, we need to consider incorrect
versions of program BOUNDEDBUFFER. Also, we will consider IN_R 4
test cases for error detection. Since BOUNDEDBUFFER does not
require input, we only consider the selection of valid R-sequences
as well as invalid R-sequences.

Error (3.1): Assume that in task BUFFERCONTROL, the variable
COUNT is incorrectly initialized to one. Due to this error, the
valid R-sequence (P,P,C,C,P,C,$) becomes infeasible. The
reproducible testing of the incorrect BOUNDERBUFFER with
(PP,C,C,P,C,$) produces a deadlock. This error also cause the
invalid R-sequence (PCC,P,P,C,$) to become feasible. As a
result, the reproducible testing of the incorrect BOUNDEDBUFFER
with (P,CCPP,C,$) does not produce an expected deadlock. 9

Error (3.2): Assume that in task BUFFERCONTROL, the condition
"COUNT<SIZE" is incorrectly written as "COUNT<=SIZE". Due to this
error, the invalid R-sequence (P,P,P,C,C,C,$) becomes feasible.
Thus, the reproducible testing of the incorrect BOUNDEDBUFFER
with (P,P,P,C,C,C,$) does not produce an expected deadlock. •

4. Applications of the BARPERMIT method

The RPERMIT method can be applied to a concurrent Ada program
only if certain features OF Ada are not used in this program. In 0
this section we apply the BARPERMIT method which allows some of
the features not allowed by RPERMIT. Section 4.1 demonstrates
how to test concurrent Ada programs which access the COUNT
attributes of entries. Section 4.2 discusses the testing of
concurrent Ada programs which contain conditional/timed entry
calls and selective wait statements with delay alternatives or *
else parts.

4.1 COUNT Attributes of Entries

Fig. 3 shows an Ada package called RESOURCE which solves the
concurrent readers and writers problem. The strategy used in •
package RESOURCE is called "many readers or one writer with the
writers having a higher priority, but all waiting readers are
given access after a writer has finished" [Geh84,p.65]. Notice
that in the body of task RW, the COUNT attributes of entries
STARTREAD and STARTWRITE are accessed. Therefore, the
reproduction of a feasible R-sequence of package RESOURCE may S
require zero, one, or more arrivals at entries STARTREAD and
STARTWRITE. However, the RPERMIT method suffers from the
restriction that exactly one entry call arrival is allowed
between two consecutive rendezvous.

To reproduce a feasible R-sequence of package RESOURCE, we need to
control accesses to the COUNT attributes of entries and to control
the sequence of arrivals and rendezvous of entry calls. In order
to do so, we consider each entries COUNT attribute as a

378 9



pseudo-entry and each access of a COUNT attribute as a pseudo
rendezvous. A sequence of arrivals and rendezvous (including
both real- and pseudo-rendezvous) of entry calls is called an
arrival-rendezvous sequence (AR-sequence). To reproduce a feasible
R-sequence S of package RESOURCE, we need to reproduce a feasible
AR-sequence with S as its R-sequence.

Fig. 4 shows a graphical description of a valid AR-sequence,
called RW_SEQ, of package RESOURCE with two writer tasks (WI and
W2) and three reader tasks (R1, R2, and R3). In RW_SEQ, each
reader (writer) calls procedure READ (WRITE) exactly once and
thus issues two entry calls. (For a reader (writer), the first
call is to entry STARTREAD (STARTWRITE) and the second call to
entry END-READ (ENDWRITE).) Arrivals of entry calls are
represented by the names of readers and writers. These names are
listed in columns based on the names of entries called by these
entry calls. The value in each pair of parentheses immediately
following the name of a reader or writer indicates the number of
the rendezvous accepting the entry call. For example, the third
arrival in RWSEQ is denoted by "R3 (4)", indicating that the
caller is R3 and this call will be accepted at the fourth
rendezvous. Each rendezvous is represented by a line consisting
of a sequence of "$"s. The line representing the ith rendezvous,
O<i<=12, is indicated by number i at the left end. The right end
of each line representing a rendezvous indicates the
corresponding statement executing the rendezvous. (Such a
statement is called a rendezvous statement.)

The AR-sequence RWSEQ is called a batch AR-sequence
(BAR-sequence) in [Tai86b,c]. An AR-sequence is said to be a
BAR-sequence provided that:
(1) For each rendezvous at a select statement, it is the only

possible rendezvous and
(2) if the ith rendezvous is executed by task T, then all entry

calls between the (i-i)th and the ith rendezvous are to task
T'

Our strategy for reproducing the BAR-sequence RWSEQ is to
transform package RESOURCE to make it possible to control the
sequence of arrivals and rendezvous of entry calls during the
program execution.

The basic idea of the transformation is to precede each entry
call or rendezvous statement with one or more entry calls to a
task called CONTROL in package BARCONTROL. (The specification
and implementation of package BARCONTROL were given in
[Tai8B6b,c].) As a result of this transformation, each entry call
(rendezvous) statement is allowed to be executed only when this
statement is to issue (execute) the next arrival (rendezvous) in
a given AR-sequence. Similar to the RPERMIT method described in
section 3, we consider that package RESOURCE owns a permit for

* arrival, called APERMIT, and a permit for rendezvous, called
R_PERMIT. Each tintry call statement is preceded with a request
for APERMIT. Each rendezvous statement is preceded with a code
segment which requests RPERMIT and waits for and releases

379



A_PERMIT for each required arrival.

Fig. 5 shows package RESOURCE transformed for reproducible
testing. Notice that the declarations of procedures READ and
WRITE in package RESOURCE are modified to include one additional
parameter which passes the task number of a reader or writer.
Each of the procedures READ and WRITE has two entry call
statements. Task RW has three rendezvous statements. The first
is the only select statement. The second is the assignment
statement accessing the COUNT attribute of entry STARTREAD.
(This assignment statement is in the last alternative of the
select statement.) The third is the accept statement inside the
loop immediately following the second rendezvous statement. These
three statements are preceded by the code WAITFORRENDEZVOUS
which is indicated by the comment "--###".

In procedures READ and WRITE, each entry call statement is
preceded with a request for APERMIT as shown below:

CONTROL.REQUEST_A_PERMIT(ID);
entry call statement;

where ID is the task identification assigned to each task.

The execution of a rendezvous statement is controlled by delaying
its execution until the required entry calls have arrived. This
is accomplished by prefacing each rendezvous statement in task RW
with the code in Figure 6, called WAITFORRENDEZVOUS. The call
to CONTROL.REQUESTRPERMIT(ID) returns when a rendezvous
statement in task RW is to produce the next rendezvous. This call
returns with a value called TOTALARRIVALS which is the total
number of entry call arrivals required (excluding the failed
conditional/timed entry calls) before the occurrence of the next
rendezvous. (Since a BAR-sequence is used, all these entry calls
are to task ID.) Each call to CONTROL.WAITARRIVAL returns after
an entry call to task RW has been allowed to be issued. The
purpose of the internal while loop is to wait until this entry
call has arrived. (The interval between the issuing and the
arrival of an entry call is unpredictable.) The call to
CONTROL.RELEASE_A_PERMIT notifies task CONTROL of the arrival of
this entry call to task RW.

The completion of code WAITFORRENDEZVOUS occurs after all the
required entry calls to task j have arrived. Then the rendezvous
statement in task RW immediately following the completed
WAITFORRENDEZVOUS begins execution. After a rendezvous starts,
task RW should notify task CONTROL of the release of RPERMIT.
In task RW, each accept statement of the form

accept El...);
is transformed into

accept E(...);
CONTROL.RELEASE_R_PERMIT; a

Now we discuss the situation that an access to an entry's COUNT
attribute occurs outside an assignment statement or the "when"
conditions of a select statement. Consider the following

380 S



statement in task RW in Fig. 4.
For L in 1..STARTREAD'COUNT loop ... ; end;

It is impossible to notify task CONTROL of the finish of accessing
STARTREAD'COUNT after the evaluation of STARTREAD'COUNT and
before the beginning of the for loop. However, this problem can
be solved by transforming the above for loop statement into

TEMP := STARTREAD'COUNT;
CONTROL.RELEASE_R_PERMIT;
for I in 1..TEMP loop ... ; end;

as shown in Fig. 5(b). The same transformation can be applied to
any non-assignment statement which references a COUNT attribute.

To test package RESOURCE, we used a procedure which contains two
writers and three readers and the BAR-sequence given in Fig. 4.
Below we consider two possible errors in package RESOURCE.

Error (4.1): Assume that in task RW, in the when condition of the
third alternative of the select statement, "and" is incorrectly
written as "or". During an execution of the incorrect RESOURCE
with RW_SEQ, when the second rendezvous is to be selected, both
the third and fourth alternatives of the select statement are
live (i.e., they are open and have entry calls to accept). (The
fourth alternative is expected to the only live one.) If the
third alternative is chosen, then this execution results in a
deadlock. because the next rendezvous in RW_SEQ can never be
reproduced. If the fourth alternative is selected, then this
error is undetected. (Note that the BARPERMIT method cannot
guarantee to correctly determine the feasibility of a
BAR-sequence.)

Error (4.2): Assume that in task RW, in the when condition of the
first alternative of the select statement, the phrase "and
STARTWRITE'COUNT=O" is incorrectly missing. During an execution
of the incorrect RESOURCE with RW_SEQ, when the sixth rendezvous
is to be selected, both the first and third alternatives are
live. If the first alternative is chosen, then this execution
results in a deadlock, because the entry call from WI to
ENDWRITE can never be issued.

4.2 Conditional/Timed Entry Calls and Selective Wait Statements
with Delay Alternatives or Else Parts

The procedure in Fig. 7 solves another version of the bounded
buffer problem. This procedure, called BOUNDEDBUFFERNEW,
differs from Fig. 1 in that task PRODUCER makes conditional entry
calls to task BUFFERCONTROL and a delay alternative is added to
the selective wait statement in task BUFFER CONTROL. The exit
statements in tasks PRODUCER, CONSUMER, and BUFFERCONTROL are
used to provide a normal termination without the use of a
terminate alternative in the select statement in BUFFERCONTROL.

To reproduce an R-sequence of BOUNDEDBUFFERNEW, we need to
control the selection of the delay alternative in the select
statement of task BUFFERCONTROL and we need to control the

381



success or failure of the conditional entry call statement in
task PRODUCER. In order to control the selections of delay
alternatives we consider a delay alternative as a pseudo-entry
and the execution of a delay alternative as a pseudo rendezvous
(Similarly for the else part of a select statement).

In order to control the success or failure of a conditional entry
call, we have to indicate in the AR-sequence whether the call
succeeds or not (Similarly for a timed entry call). Fig. 8 shows
a feasible BAR-sequence, called BB_SEQ, of procedure
BOUNDEDBUFFERNEW. The structure of BB_SEQ is similar to that in
Fig. 4. In BBSEQ, task PRODUCER (P) issues three conditional
entry calls of which only two succeed. The second conditional
entry call by task PRODUCER fails, as indicated by the letter "f"
inside the pair of parentheses immediately after the second "P".
Task CONSUMER (C) issues two entry calls. The fifth rendezvous
in BB_SEQ is an execution of the delay alternative in the select
statement of task BUFFERCONTROL. To reproduce BBSEQ, program
BOUNDEDBUFFERNEW has been transformed according to the
BARPERMIT method as shown in Fig. 9.

The conditional entry call statement in task PRODUCER
select

DEPOSIT (C);
else

null;
end select; 0

was transformed into
CONTROL.SELECTREQUESTAPERMIT(ID)(STATUS);
if STATUS then

DEPOSIT(C);
else null;
end if;

The call to SELECTREQUEST_A_PERMIT(ID) returns STATUS, which
indicates whether or not the call should succeed according to the
given BAR-sequence. A timed entry call statement is transformed in
the same way.

The delay alternative in task BUFFERCONTROL
delay 3.0;
exit;

was transformed into
delay 3.0;
CONTROL.RELEASE_R_PERMIT;
exit; 0

An else part is transformed similarly.

Possible errors in BOUNDEDBUFFERNEW as described in (3.1) and
(3.2) can be detected by using BAR-sequences corresponding to the
R-sequences for detecting errors in (3.1) and (3.2).

382 •



5. Applications of The BARGPERMIT method

In Fig. 10, task BUFFERCONTROL of program BOUNDEDBUFFERNEW
has been modified to include a fourth alternative in the select
statement. (The modified BOUNDEDBUFFERNEW is called
BOUNDEDBUFFERIN.) The guarding condition in this alternative is
true only if both the PRODUCER and CONSUMER tasks have issued an
entry call and both tasks are waiting at the select statement.
Notice that if this condition is true, then one or both of the
conditions for accepting a DEPOSIT entry call or a WITHDRAW entry
call must also be true. An R-sequence of BOUNDEDBUFFERIN in
which it is required to have two or more possible rendezvous is
called an "inherently nondeterministic R-sequence" [Tai86c]. (A
similar problem may arise if a select statement contains two or
more accept statements for the same entry or if a select
statement contains two or more delay alternatives with the same
delay value.) In order to reproduce an R-sequence of
BOUNDEDBUFFERIN, we must extend the definition of a rendezvous
to include the index number of the alternative of the select
statement selected for a real- or pseudo-rendezvous.

As shown below, all the alternatives of a select statement are
assigned unique index numbers (starting with one) according to
their order of appearance:

select
... ; -- the 1st alternative

or ... ;-- the 2nd alternative

or ... -- the nth alternative
end select;

Fig. 11 shows a feasible BAR-sequence called INDEXSEQ of
procedure BOUNDEDBUFFERIN. The structure of INDEXSEQ is
similar to that in Fig. 8 except that the right most end of each
line representing a rendezvous indicates the index number of the
alternative selected. Notice that the third alternative was
selected for the second rendezvous in INDEXSEQ, although a
rendezvous was possible for both the first and the third
alternatives.

Fig. 12 shows the modified task BUFFERCONTROL transformed for
reproducing INDEXSEQ using the BARG PERMIT method. This
transformation is the same as the BARPERMIT method except for the
following modifications.

(1) In task BUFFERCONTROL, the following declarations have been
inserted.

MAX SELECTINDEX : constant INTEGER := 4;
-- the maximum number of accept and delay alternatives in
-- the select statement.
GUARD : array(O..MAXSELECTINDEX) of BOOLEAN;

(2) The first statement in code WAITFORRENDEZVOUS
CONTROL. REQUEST R_PERMIT(TOTALARRIVALS);

is replaced with

383



CONTROL.REQUEST_R_PERMIT(TOTALARRIVALR_INDEX);
GUARD := (others => FALSE);
GUARD(RINDEX) := TRUE;

The additional parameter RINDEX in entry REQUEST R PERMIT of
task CONTROL returns the index of the
alternative to be selected for the next rendezvous.

(3) For the select statement, if the kth, k>O, alternative
has a when condition, i.e., it is of the form

when ... => selective waitalternative
then it is transformed into

when ... and GUARD(k) => selectivewaitalternative
If the kth alterantive does not have a when condition, i.e.,
it is of the form

selectivewaitalternative
then it is transformed into

when GUARD(k) => selectivewaitalternative

(4) Package BARCONTROL is modified based on the new definition
of a rendezvous and the new definition of entry
REQUEST_R_PERMIT. Also, the name of package BAR_CONTROL is
changed to BARBCONTROL.

The above modifications to the BARPERMIT method guarantee that
when a select statement is executed, if an accept or delay
alternative is to be selected for a rendezvous, there is exactly
one open alternative.

384



6. Conclusion

In this paper, we have shown how to apply three reproducible
testing methods to test several concurrent Ada programs. Also, we
have demonstrated the effectiveness of the deterministic execution
approach for error detection. More details of these reproducible
testing methods and other issues in the deterministic execution
approach were discussed in [TaiB6b,c3.

Our reproducible testing methods can be easily automated. Testing
tools based on these methods are portable and can be constructed
by using the front-end of an Ada compiler. Automated tools for
testing concurrent Ada programs, similar to those for analyzing
and debugging concurrent Ada programs [e.g., 6er84,Hel85a,Tay83]
should be part of an Ada programming environment [Tay85].

One major problem in the deterministic execution approach is the
selection of rendezvous sequences which are effective for error
detection. The test generation techniques already developed for
sequential programs [e.g.,Adr82,How82,]aiB0] can be applied to
generate rendezvous sequences. However, generation of
specification-based rendezvous sequences needs to consider various
specification models and languages, including finite state
machines, Petri nets, path expressions, temporal logic,
event-based model, flow expressions, constrained expressions,
etc. [e.g.,Avr86,Che83FDas85, Hel85b, Luc85,Mil85,Ram83].
Research is underway to develop techniques for selecting
rendezvous sequences.

The deterministic execution approach can be applied to test any
concurrent program. However, the reproducible testing problem
requires different solutions for different synchronization
constructs and different concurrent languages. We have already
developed solutions to the reproducible testing problem for
several synchronization constructs, including semaphores and
monitors [Car86]. Finally, it is important to point out that the
reproducible testing problem also exists for sequential languages
containing "guarded commands" or other nondeterministic
constructs (e.g., [Par83]).

385



References

[Adr82] Adrion, W. R.9 M. A. Branstad, and J. C. Cherniavsky,
"Validation, verification, and testing of computer software,"

ACM Computing Survey, Vol. 14, No. 2. June 1982, 159-192.
[Avr86] Avrunin, G.S., etc., "Constrined expressions: adding analysis

capabilities to design methods for concurrent software
systems." IEEE Tran. Soft. Eng., Vol. SE-12, No. 2, Feb. 1986,
278-292.

EBri73] Brinch Hansen, P., "Testing a multiprogramming system,"
Software-Practice and Experience, Vol. 3, 1973, 145-150.

[Bri78] Brinch Hansen, P., "Reproducible testing of monitors,"
Software - Practice and Experience, Vol. 8, 1978, 721-729.

ECar86] Carver, R., and Tai, K. C., "Reproducible testing of
concurrent programs based on shared variables", to appear in
Proc. 6th International Conference on Distributed Computing
Systems, May 1986.

EChe83] Chen, B.S., and Yeh, R. T., "Formal specification and
verification of distributed systems," IEEE Trans. Soft. Eng.,
Vol. SE-9, No. 6. Nov. 1983, 710-722.

EDas85] Dasarathy, B., "Timing constraints of real-time systems:
constructs for expressing them, Methods for validating them,"
IEEE Trans. Soft. Eng., Vol SE-iI, No. 1, Jan. 1985, 80-86.

[Geh84] Gehani, N., Ada Concurrent Programming, Prentice-Hall, 1984.
EGer84] German, S. M., "Monitoring for deadlock and blocking in Ada

tasking," IEEE Trans. Soft. Eng., Vol. SE-10, No. 6, Nov.
1984, 764-777.

[He185a] Helmbold, D., and Luckham, D., "Debugging Ada tasking
programs," IEEE Software, March 1985, 47-57.

[He185b] Helmbold, D., "TSL: task specification language," Proc. Ada
Inter. Conf. (ACM Ada LETTERS, Vol. V. Issue 2, Sept./Oct.
1985), 255-274.

EHow82] Howden, W. E., "Validation of scientific programs," ACM
Computing Surveys, Vol. 14, No. 2, June 1982., 193-227.

[Luc85] Luckham, D., and von Henke, F. W., "An overview of Anna, a
specification language for Ada," IEEE Software, Vol. 2,
No. 2, March 1985, 9-22.

EMil85] Milne, "CIRCAL and the representation of communication.
concurrency, and time," ACM Trans. Programming Languages and
Systems, Vol. 7., No. 2, April 1985, 270-298.

[Par83] Parnas, D. L., "A generalized control structure and its
formal definition," Comm. ACM, Vol. 26j No. 8, Aug. 1983,
572-581.

[Ram83] Ramamritham, K., and Keller, R. M., "Specification of
synchronizing processes," IEEE Trans. Soft. Eng., Vol. SE-9,
No. 6, Nov. 1983, 722-733.

[Tai80] Tai, K. C., "Program testing complexity and test criteria,"
IEEE Trans. on Software Engineering, Vol. SE-6, Nov. 1980,
531-537.

ETai85] Tai, K. C., "On testing concurrent programs," Proc. COMPSAC
85, Oct. 1985, 310-317.

ETai86a] Tai, K. C., "An approach to testing concurrent Ada programs,"
to appear in Proc. 1986 Washington Ada Symposium, March
1986, 253-264.

386



[Tai86b] Tai. f. C.. and Obaid. E. E.. "Reproducible testing of Ada
tasking programs". accepted for publication in Proc. IEEE
2nd International Conference on Ada Applications and

* Environment, April 1986, 69-80.
[Tai86c] Tai, K.C.. Obaid, E.E., and Carver, R.H., "Testing of

concurrent Ada prgrams", Technical Report TR-86-06, Department
of Computer Science, North Carolina State Universit-0. March
1986.

[TayB.] Taylor, R.N., "A general-purpose algorithm for analyzing
* concurrent programs," Commu. ACM, Vol. 26, No. 5. May 1983.

362-375.
[TayB5] Taylor, R. N.. and Standish, T. A.. "Steps to an advanced Ada

programming environment," IEEE Trans. Soft. Eng., Vol. SE-Il,
No. 3, March 1985 302-310.

387



with TEXTIO; use TEXT_10;
procedure BOUNDEDBUFFER is

task PRODUCER;
task CONSUMER;

task BUFFER CONTROL is
entry DEPOSIT(C : in CHARACTER);

entry WITHDRAW(C : out CHARACTER);

end BUFFERCONTROL;

task body PRODUCER is
begin 0

DEPOSIT ('B') ;
DEPOSIT('C');

end PRODUCER;

task body CONSUMER is
H : CHARACTER;

begin

WITHDRAW(H);

PUT(H);

WITHDRAW(H) ;
PUT (H) ;

WITHDRAW (H)-
FUT(H);

eiid CONSUMER;

task body BUFFERCONTROL is
SIZE : constant INTEGER -2;

BUFFER : array(l..SIZE) of CHARACTER;
COUNT : INTEGER range 0..SIZE := 0;

IN_INDEX, OUTINDEX : INTEGER range 1..SIZE 1;

begin
loop

select

when COUNT < SIZE

accept DEPOSIT(C : in CHARACTER) do
BUFFER(ININDEX) := C;

end;

IN_ INDEX := ININDEX mod SIZE + 1;
COUNT COUNT + 1;

or when COUNT > 0 =>

accept WITHDRAW(C out CHARACTER) do
C := BUFFER(OUTINDEX);

end;
OUTINDEX := OUTINDEX mod SIZE + 1;

COUNT COUNT - 1;
or terminate;
end select;

end loop;
end BUFFERCONTROL;

begin
null;

end BOUNDEDBUFFER;

Figure 1

388



.with TEXTIO, RCONTROL;
use TEXTIO RCONTROL;

procedure BOUNDEDBUFFER is

task PRODUCER;

task CONSUMER;
task BUFFER CONTROL is

entry DEPOSIT(C : in CHARACTER);
entry WITHDRAW(C : out CHARACTER);

end BUFFERCONTROL;

task body PRODUCER is
ID : constant INTEGER := 1; -- # task number of PRODUCER

begin
CONTROL.REQUEST R PERMIT(ID);

DEPOSIT('A');
CONTROL.REQUEST R PERMIT(ID);

DEPOSIT( B);

CONTROL.REQUEST R PERMIT(ID);

DEPOSIT('C:);

end PRODUCER;

task body CONSUMER is
H CHARACTER;

ID constant INTEGER := 2; -- # task number of CONSUMER
begin.

CONTROL.REQUESTRPERMIT(ID);

WITHDRAW(H);
PUT(H);

CONTROL.REQUESTRPERMIT(ID);
WITHDRAW(H);
PUT(H);

CONTROL.REQUESTRPERMIT(ID);
WITHDRAW(H);

PUT(H);

end CONSUMER;

Figure 2(a)

389



task body BUFFERCONTROL is

SIZE : constant INTEGER := 2:
BUFFER : array(1..SIZE) of CHARACTER;
COUNT : INTEGER range O..SIZE := 0;
ININDEX, OUTINDEX : INTEGER range 1..SIZE 1;

begin

loop
select

when COUNT , SIZE
accept DEPOSIT(C : in CHARACTER) do

CONTROL.RELEASE R PERMIT;

BUFFER(ININDEX) C;
end;
ININDEX := ININDEX mod SIZE + 1;

COUNT COUNT + 1;
or when COUNT =

accept WITHDRAW(C : out CHARACTER) do

CONTROL.RELEASE R PERMIT;
C := BUFFER(OUTINDEX);

end;
OUT INDEX := OUTINDEX mod SIZE + 1;
COUNT COUNT - 1:

or terminate;

end select;

end loop;
end BUFFERCONTROL;

begin

null;
end BOUNDEDBUFFER;

Figure 2(b)

390



package RESOURCE is
procedure READ(X:out REAL);
procedure WRITE(X:in REAL);

end RESOURCE;
package body RESOURCE is

SHAREDDATA : REAL := 0.0;
procedure READ(X:out REAL);
begin
RW.STARTREAD;
X := SHARED_DATA;
RW.ENDREAD;

end READ;
procedure WRITE(X:REAL);
begin
RW.STARTWRITE;
SHAREDDATA X;
RW.ENDWRITE:

end WRITE;
task RW is

entry STARTREAD;
entry END_READ;
entry STARTWRITE;
entry END_WRITE;

end RW;
task body RW is
NOREADERS : NATURAL 0;
WRITERPRESENT : BOOLEAN := FALSE;

begin
loop

select
when not WRITERPRESENT and
STARTWRITE'COUNT=O =>
accept STARTREAD;
NOREADERS := NOREADERS + 1;

or
accept END_READ;
NOREADERS := NOREADERS - 1;

or
when not WRITERPRESENT and
NOREADERS=0 =>
accept START_WRITE;
WRITERPRESENT := TRUE;

or
accept END_WRITE;
WRITERPRESENT := FALSE;
for L in 1..STARTREAD'COUNT loop

accept START_READ;
NOREADERS := NOREADERS + 1;

end loop;

end select;
end loop;

end RW;
end RESOURCE;

Figure 3

391



START-READ ENDREAD STARTWRITE END_WRITE

W2 (1)
Wi (6)

(1) **:**t**********t select
W2 (2)

R3 (4)
(2) *tt************tt*******t** select
(3) **************tt*t**** COUNT
(4) *********t*******t**t************.t************* accept

R3 (5)
(5) *************** * t*****t********t: tt** select

RI (9)
(6) ***************.*.t*** select

Wi (7)
(7) *******************.*****::t****.**c* select
(8) * .***.*. *:*****.*: *t*t*-*-******:* COUNT
(9) ** ***.***t** ********* ***********.*****t*****t* accept

R2 (10)
(10) *****************-*****tt***t*********** select

R2 (11)
RI (12)

(11) *.*-t- **s**:****.****s*.**:t -* select
(12) **************:*** select

Figure 4

392



with BAR CONTROL; use BARCONTROL;

package RESOURCE is

procedure READ(X:out REAL; ID:INTEGER);
procedure WRITE(X:REAL; ID::INTEGER);

end RESOURCE;

package body RESOURCE is
SHAREDDATA REAL := 0.0;

procedure READ(X:out REAL;ID:INTEGER) is

begin
CONTROL.REQUEST A PERMIT(ID);
RW.START_READ;

X := SHAREDDATA;
CONTROL.REQUEST A PERMIT(ID);
RW.ENDREAD;

end READ;

procedure WRITE(X:REAL; ID:INTEGER) is

begin
CONTROL.REQUESTAPERMIT(ID);

RW.STARTWRITE;
SHAREDDATA := X;
CONTROL.REQUEST A PERMIT(ID);
RW.ENDWRITE;

end WRITE;

task RW is
entry STARTREAD;
entry ENDREAD;
entry STARTWRITE;
entry ENDWRITE;

end RW;

Figure 5(a)

393



task body RW is
NO READERS : NATURAL := 0;
WRITERPRESENT : BOOLEAN := FALSE;
ID : constant INTEGER := ... ;
TOTALARRIVALS : INTEGER;
TEMP INTEGER;

begin

loop

WAITFORRENDEZVOUS;

select
when not WRITERPRESENT and
STARTWRITE'COUNT=O

accept STARTREAD;

CONTROL.RELEASE R PERMIT;
NOREADERS := NOREADERS + 1;

or
accept ENDREAD;

CONTROL.RELEASE R PERMIT;
NOREADERS := NOREADERS - 1;

or
when not WRITERPRESENT and

NO READERS==

accept STARTWRITE;
CONTROL.RELEASE R PERMIT;
WRITERPRESENT := TRUE;

or
accept ENDWRITE;

CONTROL.RELEASER_PERMIT;

WRITERPRESENT := FALSE;
WAITFORRENDEZVOUS;

TEMP := STARTREAD'COUNT;
CONTROL.RELEASE RPERMIT;

for L in 1..TEMP loop
WAITFORRENDEZVOUS;

accept STARTREAD;
CONTROL.RELEASERPERMIT;

NOREADERS := NOREADERS + 1;
end loop;

end select;
end loop;

end RW;
end RESOURCE;

Figure 5(b)

394 S



CONTROL. REQUEST R PERMIT(ID) (TOTALARRIVALS);

CURRENTARRIVALS sum of COUNT attributes of all entries of

task ID;
while CURRENTARRIVALS < TOTALARRIVALS loop

CONTROL. WAIT_ARRIVAL;
PREVIOUSARRIVALS CURRENT-ARRIVALS;

CURRENTARRIVALS sum of COUNT attributes of all entries of
task ID;

while CURRENTARRIVALS = PREVIOUSARRIVALS loop

delay ... ; -- to reduce the amount of busy-waiting
CURRENTARRIVALS := sum of COUNT attributes of all entries

of task ID;
end loop;

CONTROL.RELEASE A PERMIT;
end loDp;

Figure 6. Code WAITFORRENDEZVOUS for Task ID

with TEXTIO;use TEXTIO;
procedure BOUNDEDBUFFER NEW is

task PRODUCER;
task CONSUMER;
task BUFFERCONTROL is

entry DEPOSIT(C in CHARACTER);
entry WITHDRAW(C out CHARACTER);

end BUFFERCONTROL;

task body PRODUCER is
C : CHARACTER;

begin

loop
GET(C);

select
DEPOSIT (C) ;

else
nul 1;

end select;

exit when C=:%'; -- % is the last symbol
end loop;

end PRODUCER;

task body CONSUMER is

C : CHARACTER;
begin

loop

WITHDRAW (C) ;
PUT (C);
exit when C=7%';

end loop
end CONSUMER;

1-igure 7(a)

395



0
task body BUFFER_CONTROL is

SIZE : constant INTEGER := 2;
BUFFER : array(1..SIZE) of CHARACTER;
COUNT : INTEGER range O..SIZE := 0;
IN_INDEX, OUT_INDEX : INTEGER range 1..SIZE := 1;

begin
loop

select
when COUNT < SIZE =>

accept DEPOSIT(C : in CHARACTER) do
BUFFER(IN_INDEX) := C;

end;
ININDEX := ININDEX mod SIZE + 1;
COUNT := COUNT + 1;

or when COUNT > 0 =>
accept WITHDRAW(C : out CHARACTER) do

C := BUFFER(OUT_INDEX);
end;
OUTINDEX := OUTINDEX mod SIZE + 1;
COUNT := COUNT - 1;

or delay 3.0;
exit;

end select;
end loop;

end BUFFERCONTROL;

begin
null;

end BOUNDEDBUFFER_NEW;

Figure 7(b)

DEPOSIT WITHDRAW

P (1)
C (2)

(1) *$*$$********$***$*** accept
P (f)

(2) *$**$ * *$ * **$ accept
C (4)

P (3)
(3) $ *$$* **** $***** accept
(4) ***$$*****$***$$****** accept
(5) $*$*S$$*$$S$$**S delay

Figure 8

396



with TEXT_IO BARCONTROL;
use TEXT_IO BAR-CONTROL;
procedure BOUNDEDBUFFERNEW is

task PRODUCER;
task CONSUMER;
task BUFFERCONTROL is

entry DEPOSIT(C : in CHARACTER);
entry WITHDRAW(C : out CHARACTER);

end BUFFERCONTROL;

task body PRODUCER is
ID constant INTEGER :=1 -- # task number OF PRODUCER
C CHARACTER;
STATUS : BOOLEAN;

begin
loop
GET(C);
CONTROL.SELECTREQUEST_APERMIT(ID)(STATUS);
if STATUS then -- #
DEPOSIT(C);

else
null;

end if;
exit when C='%'; -- % is the last symbol

end loop;
end PRODUCER;

task body CONSUMER is
C CHARACTER;
ID constant INTEGER := 2; -- # task number of CONSUMER

begin
loop
CONTROL.REQUEST_A_PERMIT(ID);
WITHDRAW(C);
PUT (C);
exit when C='%';

end loop
end CONSUMER;

Figure 9(a)

397



task body BUFFERCONTROL is
SIZE : constant INTEGER := 2;
BUFFER : array(1..SIZE) of CHARACTER;
COUNT : INTEGER range O..SIZE := 0;
ININDEX, OUT_INDEX : INTEGER range 1..SIZE 1;

begin
loop

WAITFORRENDEZVOUS;
select

when COUNT < SIZE =>
accept DEPOSIT(C : in CHARACTER) do

CONTROL.RELEASERPERMIT; -- #
BUFFER(ININDEX) := C;

end;
ININDEX := ININDEX mod SIZE + 1;
COUNT := COUNT + 1;

or when COUNT > 0 =>

accept WITHDRAW(C : out CHARACTER) do
CONTROL.RELEASERPERMIT; -- #
C := BUFFER(OUTINDEX);

end;
OUTINDEX := OUTINDEX mod SIZE + 1;
COUNT := COUNT - 1;

or delay 3.0;
CONTROL.RELEASERPERMIT;
exit;

end select;

end loop;
end BUFFERCONTROL;

begin 9
null;

end BOUNDEDBUFFERNEW;

Figure 9(b)

3

398



task body BUFFERCONTROL is
SIZE : constant INTEGER := 2;
BUFFER : array(1..SIZE) of CHARACTER;
COUNT : INTEGER range 0..SIZE := C);
ININDEX. OUTINDEX : INTEGER range 1..SIZE 1;

begin
loop

select
when COUNT < SIZE =>

accept DEPOSIT(C : in CHARACTER) do
BUFFER(ININDEX) := C;

end;
ININDEX := ININDEX mod SIZE + 1;
COUNT := COUNT + 1;

or when COUNT 10 =
accept WITHDRAW(C : out CHARACTER) do

C := BUFFER(OUTINDEX);
end;
OUTINDEX := OUTINDEX mod SIZE + 1;
COUNT := COUNT - 1;

or when (DEPOSIT7COUNT 1) and (WITHDRAW"COUNT = 1) >
accept DEPOSIT(C : in CHARACTER);

or delay 3..0;
exit;

end select;

end loop;
end BUFFERCONTROL;

Figure 10

DEPOSIT WITHDRAW

P (1)
(1) ********$$*$*$$ *$ **** accept -- #1

C (3)
P (2)

(2) *****$***$******$****** accept -- #3
(3) **$********** ********* accept -- #2
(4) ****$$$***$**$$$$$*$$$$**$ delay -- #4

Figure 11

399



task body BUFFER_-CONTROL is
SIZE :constant INTEGER :=2:
BUFFER :array(l. .SIZE) of CHARACTER;
COUNT :INTEGER range 0..SIZE :=);
IN_-INDEX, OUT-INDEX :INTEGER range 1..S'ZE 1;
MAX_-SELECTINDEX :constant INTEGER :=4;
GUARD :array (0..MAXSELECTINDEX) of BOOLEAN;

begin
loop

WAITFORRENDEZVOUS;
select

when (COUNT < SIZE) and (GUARD(l)) > -#
accept DEPOSIT(C :in CHARACTER) do

CONTROL.RELEASE_-R_-PERMIT;
BUFFER(ININDEX) := C;

end-.
ININDEX :=IN-INDEX mod SIZE + 1;
COUNT :=COUNT + 1;

or when (COUNT > 0) and (GUARD(2)) ->--#2
accopt WITHDRAW(C : out CHARACTER) do

CONTROL.RELEASE_-R_-PERMIT;
C :=BUFFER(OUTINDEX);

end;
OUTINDEX :=OUTINDEX mod SIZE + 1;
COUNT :=COUNT-i1;

or when ((DEPOSIT7COUNT=1) and (WITHDRAW'COUNT=1)) -- #*3
and (GUARD(3)) =>
accept DEPOSIT(C : in CHARACTER);

or when GUARD(4) => -- #4
delay .3.0;
CONTROL.RELEASERPERMIT;
exit;

end select;
end loop;

end BUFFERCONTROL;

Figure 12

400



AN EMPIRICAL STUDY OF TESTING

CONCURRENT Ada* PROGRAMS

K. C. TAI and RICHARD H. CARVER

DEPARTMENT OF COMPUTER SCIENCE

NORTH CAROLINA STATE UNIVERSITY

RALEIGH, NORTH CAROLINA, USA

EVELYN OBAID

DEPARTMENT OF MAiHEMATICS

& COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

SAN JOSE, CALIFORNIA, USA

* Ada IS A REGISTERED TRADEMARK OF THE

US GOVERNMENT - AJPO

401



A PROBLEM WITH THE CORRECTNESS OF

CONCURRENT ADA PROGRAMS

AN EXECUTION OF A CONCURRENT Ada PROGRAM WITH

AN INPUT PRODUCES A SEQUENCE OF RENDEZVOUS

CALLED A RENDEZVOUS SEQUENCE (R-SEQUENCE).

LET P BE A CONCURRENT Ada PROGRAM. REPEATED

EXECUTIONS OF P WITH INPUT X MAY PRODUCE

DIFFERENT R-SEQUENCES.

FOR P WITH INPUT X, THE SPECIFICATION OF P

DEFINES A SET OF VALID R-SEQUENCES OF P WITH

INPUT X, DENOTED BY VALID(P,X).

FOR P WITH INPUT X, THE IMPLEMENTATION OF P

DEFINES A SET OF FEASIBLE R-SEQUENCES OF P WITH

INPUT X, DENOTED BY FEASIBLE(P,X).

P IS SAID TO HAVE A RENDEZVOUS ERROR IF FOR

SOME INPUT X, VALID(P,X) /= FEASIBLE(P,X).

402



HOW TO DETERMINE WHETHER OR NOT P CONTAINS

RENDEZVOUS ERRORS?

- VERIFICATION

- TESTING

THE PAPER IN THE WORKSHOP PROCEEDINGS SHOWS

THE RESULT OF APPLYING OUR TESTING

TECHNIQUES. DETAILS OF THESE TECHNIQUES

ARE GIVEN IN [TAI86a,b,c).

THE CONVENTIONAL APPROACH TO TESTING

A PROGRAM

- SELECT INPUTS OF THIS PROGRAM

- EXECUTE THIS PROGRAM WITH EACH TEST

INPUT EXACTLY ONCE AND CHECK THE

RESULT

THE ABOVE APPROACH IS NOT APPROPRIATE FOR

TESTING CONCURRENT PROGRAMS.

403



PROBLEMS WITH TESTING CONCURRENT

Ada PROGRAMS

PROBLEM 1. CORRECTNESS PROBLEM

THE CORRECTNESS OF P WITH INPUT X CANNOT

BE DETERMINED BY A SINGLE EXECUTON OF

P WITH INPUT X.

HOW TO DETERMINE THE CORRECTNESS OF P

WITH INPUT X BY TESTING?

THE REPEATED EXECUTION APPROACH

- REPEATEDLY EXECUTE P WITH INPUT X

* RANDOM PRODUCTION OF FEASIBLE

R-SEQUENCES
* IMPOSSIBLE TO DETECT THE EXISTENCE OF

VALID, BUT INFEASIBLE R-SEQUENCES

THE DETERMINISTIC EXECUTION APPROACH

- SELECT A SET OF R-SEQUENCES

- FOR EACH R-SEQUENCE S,

- DETERMINE THE FEASIBILITY OF S FOR

P WITH INPUT X

- IF S IS FEASIBLE, REPRODUCE S AND

CHECK THE RESULT

404 0



PROBLEM 2. REPRODUCIBLE TESTING PROBLEM

ASSUME THAT AN EXECUTION OF P WITH INPUT

X HAS PRODUCED AN R-SEQUENCE S WITH

AN INCORRECT RESULT.

(S IS A FEASIBLE R-SEQUENCE BECAUSE IT

IS ALLOWED BY THE IMPLEMENTATION OF P.)

IN ORDER TO UNDERSTAND HOW THE INCORRECT

RESULT WAS PRODUCED, WE WOULD LIKE TO

REPRODUCE S.

HOWEVER, THERE IS NO GUARANTEE THAT S

CAN BE REPRODUCED BY ONE OR MORE

EXECUTIONS OF P WITH INPUT X.

HOW TO REPRODUCE A FEASIBLE R-SEQUENCE?

405



PROBLEM 3. FEASIBILITY PROBLEM

ASSUME THAT AN EXECUTION OF P WITH INPUT

X HAS PRODUCED AN INVALID R-SEQUENCE S'.

(S' IS NOT ALLOWED BY THE SPECIFICATION

OF P.)

AFTER MAKING CORRECTIONS, WE NEED TO KNOW

WHETHER OR NOT S' CAN STILL BE PRODUCED

BY THE MODIFIED P WITH INPUT X.

HOWEVER, EVEN IF MANY EXECUTIONS OF THE

MODIFIED P WITH INPUT X HAVE NOT PRODUCED

S', WE CANNOT SAY THAT S' IS INFEASIBLE

FOR P WITH INPUT X.

HOW TO DETERMINE THE FEASIBILITY OF

AN R-SEQUENCE?

406



THE STRATEGY FOR SOLVING THE FEASIBILITY
AND REPRODUCIBLE TESTING PROBLEMS

LET P BE A CONCURRENT Ada PROGRAM. P IS

TRANSFORMED INTO ANOTHER CONCURRENT Ada

PROGRAM P'.

ANY EXECUTION OF P' WITH (XS) AS INPUT

REPRODUCES S AS ITS R-SEQUENCE, IF AND

ONLY IF S IS FEASIBLE.

0P

INPUT --- > --- > RESULT?

p'

R-SEQUENCE S --- --- > R-SEQUENCE ?

407



THE REPRODUCIBLE TESTING PROBLEM FOR Ada

IS TO REPRODUCE FEASIBLE R-SEQUENCES.

WHAT IS AN R-SEQUENCE OF A CONCURRENT Ada

PROGRAM P?

A SEQUENCE OF STARTS OF RENDEZVOUS

(...,(Ci,Ei),...), WHERE

Ci: THE CALLER OF THE ith RENDEZVOUS

Ei: THE ENTRY NAME OF THE ith RENDEZVOUS

THE ABOVE DEFINITION OF AN R-SEQUENCE IS 0

INSUFFICIENT TO DETERMINE THE RESULT OF

AN EXECUTION OF P WITH INPUT X IF P

CONTAINS

- SELECTIVE WAIT STATEMENTS WITH DELAY

ALTERNATIVES OR ELSE PARTS

- SHARED VARIABLES

- ACCESSES TO THE COUNT ATTRIBUTES OF

TASK ENTRIES

(INTERRUPTS AND THE USE OF THE TIME CLOCK

ARE NOT CONSIDERED.)

408



HOW TO REPRODUCE A FEASIBLE R-SEQUENCE?

BASIC APPROACH:

TO CONTROL THE EXECUTION SEQUENCE OF

ENTRY CALLS

AN ENTRY CALL IS ALLOWED TO BE ISSUED

ONLY AFTER THE PREVIOUS RENDEZVOUS HAS

STARTED AND WHEN THIS CALL IS FOR THE

NEXT RENDEZVOUS.

- ISSUING OF THIS ENTRY CALL

- ARRIVAL OF THIS ENTRY CALL

- ACCEPTANCE OF THIS ENTRY CALL

- ISSUING OF THE NEXT ENTRY CALL

PROBLEMS:

- PSEUDO RENDEZVOUS

- CONDITIONAL/TIMED ENTRY CALLS

409



task type MESSAGE CARRIER is
entry BEGIN RE-CEIVE;
entry END RECEIVE;
entry BROADCAST (M:MESSAGE);

end;

receivers: R1, R2, R3

broadcasters B1, B2

entry name abbreviation:

B_R, ER, BR, RE

valid R_sequences:

0 (B1, BR, Rl.B_R, R1.ER, R2.B_R, R2.ER)

© (B1.BR, R1.B_R, R2.BR, R1.E-R, R2.ER)

(D (R1.B_R, R2.B_R, B1.BR, R2.E_R, R1. E_R)

invalid Rsequences:

( 11(B1.BR, R1.B_R, B2.Br, ....... )
(D (R1. B_R, R2.BR, B1.BR, R3.B_R,...)

® is feasible if "/=" is changed to "=" in the
3rd alternative of the select stmt

410



REAL-RENDEZVOUS: EXECUTION OF AN ACCEPT

STATEMENT

PSEUDO-RENDEZVOUS:

- EXECUTION OF AN ELSE PART OR DELAY

ALTERNATIVE

- ACCESS TO A SHARED VARIABLE

- ACCESS TO AN ENTRY'S COUNT ATTRIBUTE

AN R-SEQUENCE IS REPRESENTED AS

(...,(Vi,Ci,Ei),...), WHERE

Vi: THE TYPE OF THE ith RENDEZVOUS

Ci: THE CALLER OF THE ith RENDEZVOUS

Ei: THE ENTRY NAME OF THE ith RENDEZVOUS

A PSEUDO-RENDEZVOUS MAY REQUIRE ZERO,

ONE, OR MORE ARRIVALS OF ENTRY CALLS.

THE REPRODUCTION OF AN R-SEQUENCE

REQUIRES THE REPRODUCTION OF ARRIVALS AND

RENDEZVOUS OF ENTRY CALLS.

411



A SEQUENCE OF ARRIVALS AND RENDEZVOUS OF

ENTRY CALLS IS CALLED AN ARRIVAL-

RENDEZVOUS SEQUENCE (AR-SEQUENCE).

AN AR-SEQUENCE CAN BE DESCRIBED AS

(...,Ai,(Vi,Ci,Ei),...) WHERE

Ai IS THE ARRIVAL SEQUENCE BETWEEN THE

ith and (i+l)th RENDEZVOUS.

AN ARRIVAL SEQUENCE IS

(...,(Lj,Bj),...) WHERE

Lj: THE CALLER OF THE jth ARRIVAL

Bj: THE TYPE OF THE jth ARRIVAL

- BLOCKING ENTRY CALL

- CONDITIONAL/TIMED ENTRY CALL

(INDICATION OF SUCCESS/FAILURE)

A FEASIBLE AR-SEQUENCE CAN BE SIMPLIFIED

TO (...,Ai,(Vi,Ei),...).

HOW TO REPRODUCE A FEASIBLE AR-SEQUENCE?

413



NOT EVERY FEASIBLE AR-SEQUENCE CAN BE

REPRODUCED DETERMINISTICALLY.

WHEN A SELECT STATEMENT IS EXECUTED, IF

THERE ARE TWO OR MORE POSSIBLE

RENDEZVOUS, ONE OF THEM IS SELECTED

RANDOMLY.

AN AR-SEQUENCE IS SAID TO BE A

DETERMINISTIC AR-SEQUENCE (DAR-SEQUENCE)

IF EACH RENDEZVOUS AT A SELECT

STATEMENT IS THE ONLY POSSIBLE

RENDEZVOUS.

IN GENERAL, A NON-DETERMINISTIC 0

AR-SEQUENCE CAN BE TRANSFORMED INTO A

DAR-SEQUENCE.

A DAR-SEQUENCE CAN BE DESCRIBED AS

(...,Ai,(Vi,Ri),...) W HERE

Ri: THE NAME OF THE TASK EXECUTING THE

ith RENDEZVOUS

414



A DAR-SEQUENCE IS SAID TO BE A BATCH

AR-SEQUENCE (BAR-SEQUENCE) PROVIDED THAT

IF THE ith RENDEZVOUS IS EXECUTED BY TASK

T, THEN ALL ENTRY CALLS BETWEEN THE

(i-1)th AND THE ith RENDEZVOUS ARE TO

TASK T.

HOW TO REPRODUCE A FEASIBLE

DAR-SEQUENCE OF P?

THE BAR PERMIT METHOD:

TO TRANSFORM P INTO ANOTHER CONCURRENT

Ada PROGRAM P' IN ORDER TO CONTROL THE

EXECUTION SEQUENCE OF

- ENTRY CALL ARRIVALS

- RENDEZVOUS STARTS.

INPUT I --- > --- > RESULT?

pt

* PAR-SEQUENCE Q --- > --- > AR-SEQUENCE ?

415



FUTURE RESEARCH

- DEVELOPMENT OF AUTOMATED TOOLS FOR

REPRODUCIBLE TESTING

- GENERATION OF R-SEQUENCES EFFECTIVE FOR

ERROR DETECTION

IN RECENT YEARS, A NUMBER OF MODELS FOR

SPECIFYING CONCURRENCY HAVE BEEN

DEVELOPED. THESE MODELS WILL BE STUDIED

FOR TEST GENERATION.

- EMPIRICAL STUDY OF TESTING CONCURRENT Ada

PROGRAMS

TELEPHONE NUMBER: (919) 737-7862

USENET ADDRESS: MCNC!NCSU!KCT

416



Logical foundations and formal verification. DTC/RBJ/011 Issue 2

Title: Logical foundations and formal verification

Author: R.B.Jones Ref: DTC/RBJ/011 Issue: 2

Address: ICL Defence Systems
Eskdale Road
Winnersh
Berkshire RG11 5TT
ENGLAND, U.K.

Telephone: 0044-734-693131 x 6536

Telex: 847557

Usenet: ..Imcvaxlukc!stc!rbj

Date: 23th June 1986

Keywords: VERIFICATION LOGIC FOUNDATIONS

Abstract:

This position paper presents an approach to the design and development
of environments for the production of computer systems for which we
require to have very high degrees of assurance of correctness.

The approach is shaped by particular concern for:

a) The soundness of the logical framework within which the
correctness of the implementations is to be established.

b) The inviolacy of the logical framework to errors on the part of
the user.

c) The means whereby the correctness of the implementation of the

environment may be assured.

In consequence the following characterise the approach proposed:

i) The approach is "foundational" rather than axiomatic. By this we
mean that a single logical foundation is to be established during
system design, and that users are permitted only definitional
facilities which are guaranteed not to compromise the consistency
of, the foundation.

ii) The foundation is supported by some philosophical examination of
the nature of logical truth, and by careful examination of the
intended domain of discourse (our "ontology') and the required
expressiveness of the logic.

DTC/RBJ/O11 * International Computers Limited, 23th June 1986 Page I of 24

417



Logical foundations and formal verification. DTC/RBJ/011 Issue 2

iii) Both the foundation and its implementation are Oreductionist".
This means that the foundation is constructed from the simplest
possible core, by the process of introducing new definitions, new
syntactic forms, and exploiting (proven) derived rules of
inference. The implementation is similarly to be built from a
very small core in a carefully structured way. This reductionism
is intended to provide maximal confidence in the consistency of
our formal system, and the correctness of its implementation. We
expect it to lead also to economies in implementation.

iv) The foundation is type-free. A type system is to be constructed
over the foundation for the purpose of providing transparent means
of specifying the properties of the entities in the domain of
discourse. These objects remain type-free, in the sense that
self-application is permitted and polymorphic functions are "first
class* entities.

Our philosophical position has an intuitionistic flavour. We take the
(absolute) truths of logic to be those statements which correctly
express the consequences of applying correctly some effective
procedure. We suppose the correctness of execution of the elementary
steps of an effective procedure to be supportable only by an appeal to
the intuition. This philosophical position provides some of the
motivation for reducing our formal system to the smallest possible
core. This ensures that our intuitions are relied upon no more than is
inescapable.

Three levels of language are currently envisaged, each corresponding
also to a system architecture, and a stage in development. The lowest
level is illustrated by a formal system corresponding closely to pure
combinatory logic. The middle level is intended to be an application
independent type theory. The types in this system correspond to
(partial) specifications and to recursively enumerable sets of terms
which satisfy the specifications. At the third level are the prime
languages for system development including abstract specification
languages and implementation languages. Where possible specifications
for implementations will be expressed in extensions to the programming
language type system. The semantics of all these languages is
ultimately expressed in terms of our primitive logical foundation, and
hence the development is axiomatic only in the core foundation system.

DT/RBJ/011 * International Computers Limited, 23tb June 1986 Page 2 of 24

418



Logical foundations and formal verification. DTC/RBJ/011 Issue 2

0. CONTENTS

1. INTRODUCTION

2. PHILOSOPHY AND ONTOLOGY
2.1 Philosophical positions
2.2 Ontology
2.3 Logical Pluralism and Conventionalism
2.4 Neo-constructive Ontology

3. PRIMITIVE FORMALISATION
3.1 Introduction

3.2 Syntax
3.3 Axioms
3.4 Inference Rules
3.5 Abstraction
3.6 Definitions for encodings
3.7 Remarks on the Primitive Formalism

4. TYPES AND SPECIFICATIONS
4.1 Introduction
4.2 Recursive functions
4.3 Recursive sets
4.4 Recursively enumerable sets
4.5 Function spaces
4.6 Derived rules of inference
4.7 Types as values

5. APPLICATION LANGUAGES

6. IMPLEMENTATION

7. VERIFICATION

8. CONCLUSIONS

9. REFERENCES

1. INTRODUCTION

This paper proposes an approach to the problem of building support
environments for the development of very highly assured software. It
does so, not from a pragmatic viewpoint, but from an idealist one. It
represents an attempt to promote the convergence of computer science
with cobstructive mathematics.

The ideas presented here are by no means fully worked out. They are
presented as a basis for a programme of work, with a view to obtaining
some feedback on the merits of the proposals.

The first four sections present our approach to logical foundations,
and suggest how the mos. elementary logical basis might be built up by
stages into sophisticated high level specification and implementation
languages.

DTC/RBJ/01l * International Computers Limited, 23tb June 1986 Page 3 of 24

419



Logical foundations and formal verification. DTC/RBJ/011 Issue 2

The first stage is philosophical, and consists in adopting an attitude
about the nature of the mathematics of computing systems. The most
important and concrete result of this philosophical stage is an
ontology - a statement identifying the entities which we take to be the
subject matter of computer science and which will constitute the domain
of discourse of the formal systems we develop. Included in this stage
is clarification of what sort of statements we wish to be able to make
about the objects in our domain of discourse.

Having identified our ontology, we next construct a minimal formal
language. In this language we may make statements about objects in our
domain of discourse, and we may undertake formal derivations which
establish the truth of some of these statements. In order that we may
be able to obtain the highest degree of assurance of the correctness of
our development environment, and in particular that we should be able
to assure ourselves of the consistency of our formal systems and the
correctness of their implementations, primary objectives in chosing
this first level of formalisation are generality and simplicity. It is
intended to be easy to reason about rather than easy to reason in, and
hence con-ists of the simplest possible sufficiently expressive formal
system. This system is type-free.

The third stage is the establishement of a more usable formal language
in which the properties of entities may be specified and proven. This
is done by providing a new syntax for constructs expressible in the
basic formal system, and by establishing derived inference rules which
facilitate proofs. The language in which specifications are expressed
may be regarded as a type theory. The types in this theory are however
purely a means of expressing specifications. They place no
restrictions on term formation, and play no part in securing the
consistency of the logic. The Otypes" express properties of terms. A
term may have many properties, and hence many types. The objects in
the domain of discourse might therefore better be described as
polytypical than polymorphic.
The formal *type-theory" we propose to establish during the third phase

is the mathematical foundation for a variety of (more or less problem
oriented) development languages, among which Ada might number. These
languages are addressed during our fourth phase. Such languages would
be established by specifying their syntax and providing a denotational
semantics in the type-theory. Along with programming languages such as
Ada, specialised specification languages would be established, together
with appropriate libraries of derived inference techniques. The
programmer is thereby provided with a formal language in which he may
reason 'in as natural a way as possible about the properties of his
programs.

In section 6 we give some indication of how we propose to implement a
support environment for these languages. Our final section addresses
the problem of verifying of such an environment.

2. PHILOSOPBY AND ONTOLOGY

2.1 Philosophical positions

Any formal foundation systed for mathematics is necessarily connected
more or. less intimately with some philosophical position upon the
nature of mathematics.

DTC/RBJ/Oll * International Computers Limited, 23th June 1986 Page 4 of 24

420



Logical foundations and formal verification. DTC/RBJ/Oll Issue 2

The three principal 'schools' of philosophy of mathematics in the
twentieth century have been logicism, intuitionism, and formalism.

Logicism, of which Bertrand Russell was one of the principal
proponents, is the thesis that the whole of mathematics is ultimately
reducible to symbolic logic. In aThe Principles of Mathematics"
[Rus03] (the manuscript of which was completed on the last day of the
19th century), Russell's states that: "The fact that all Mathematics is
Symbolic Logic is one of the greatest discoveries of our age; and when
this fact has been established, the remainder of the principles of
mathematics consists in the analysis of Symbolic Logic itself.'

Intuitionism, a school of thought most prominently associated with
Brouwer rejects classical mathematics in favour of the more spartan
constructive mathematics. According to Bishop (Bis67] an important
element of the intuitionist position is that: "every mathematical
statement ultimately expresses the fact that if we perform certain
computations within the set of positive integers, we shall get certain
results". Intuitionists reject some of the principles of classical
logic, notably the law of the excluded middle.

Formalism, a doctrine and a programme due to Hilbert, is characterised
by the view that classical mathematics may be established by formal
derivation from plausible axioms, provided that the consistency of the
formal axiomatisation is established by 'finitary' or 'constructive'
means.

Of these positions only the intuitionist position has survived intact
to the present day, though it remains a position which the majority of
working mathematicians find unacceptable.

The logicist position failed to be established primarily because two of
the principles (axioms) necessary for the development of classical
mathematics are difficult to establish as principles of logic. Neither
the axiom of infinity nor the axiom of choice can be convincingly shown
to be logically necessary propositions.

The formalist programme was shown to be unachievable by Kurt G6del. He
demonstrated that classical mathematics is not completely formalisable,
and that no formalisation of arithmetic can be proven consistent by
finitary means [God.31].

2.2 Ontology

Associated with each of the philosophical positions outlined above are
underlying ideas on the population of the universe of mathematics, on
what, as far as mathematics is concerned, 'exists*. Logicism and
formalism share similar ontologies, since they both aim to provide a
foundation for "classical" mathematics. They differ to some degree in
the formal system in which mathematics is derived, and differ widely in
how the formalisation is to be philosophically justified, but
ontologically they are broadly similar.

0

DTC/RJ/Oll * International Computers Limited, 23th June 1986 Page 5 of 24

421



Logical foundations and formal verification. DTC/RBJ/Oll Issue 2

The underlying ontology is that of a hierarchy of sets, built up in
.stages from a (possibly empty) collection of individuals. Hatcher
describes this in (Hat82] (speaking with reference to the Zermelo-
Fraenkel axiomatisation of set theory) "...the hierarchy of sets we
envisage consists of all the sets we can obtain by starting with the
null set and iterating, in the indicated manner, our power set and
union operations any transfinite number of times.'

This process rehabilitates Cantor's informal set theory, after
Russell's paradox had shown Frege's formalisation of it to be
inconsistent, by restricting abstraction so that no set can be formed
until after the formation of all the sets which it contains. (this is
not the same as requiring that a description of a set may not mention
any sets not formed before it). This may be restated as the
requirement that the transitive closure of the membership relation is
anti-reflexive (and hence its reflexive closure is a p~rtial ordering
on the universe of sets). Though this last condition is not fully
adhered to by all the formal foundation systems for classical
mathematics, (Quine's New Foundations [Qui63] being one counter-
example), one of its consequences, that functions may not be members of
their own domains, is present in all classical foundation systems of
which I am aware.

The intuition behind this ontological position is probably attributable
to Bertrand Russell. The first attempt to articulate the idea is in
[Rus033, and results from Russell's attempts to identify the logical
errors which give rise to the paradoxes. When the idea is ela6orated
in Russell's Theory of Types [RusO8], it is easily confused with the
proscription of impredicative definitions, but seems still to be a part
of the underlying intuition. Although *first-order" axiomatisations of
set theory began without such a clear commitment to a hierarchy
[ZerO8], in the later axiomatisations known now as ZF and NBG (see
(Hat82]), the hierarchy is cleaned up by the inclusion of an axiom of
regularity.

Russell's intuition cuts across the intuitions which are encouraged by
an acquaintance with digital computers (for which he can hardly be
blamed). In considering the behaviour of computers it is perhaps more
natural to consider types as ways of interpreting objects. We can
consider an object stored in a computer memory, at one moment as a data
value, and at the next as a program, rule or function.

In computing we can accept a single countable domain and interpret the
members of this domain in terms of types. There appears to be no clear
intuitfve reason to proscribe applying a rule to itself, and this is
practically very useful.

The significance of the problem of self application of functions has
been argued by Dana Scott in [Sco70 and elsewhere. The theoretical
underpinning of denotational semantics has required and resulted in
resolution of these difficulties within a classical framework. This is
done by slimming down function spaces until they are small enough to be
isomorphic to the domains over which the functions range. Self-
application then requires a non-standard account of the result of
applying a function to an argument. (One which doesn't require a set
directly or indirectly to be a member of itself, as proscribed by the
axiom of regularity)

DTC/RBJ/011 * International Computers Limited, 23th June 1986 Page 6 of 24

422



Logical foundations and formal verification. DTC/RBJ/011 Issue 2

This solution carries rather too much baggage with it to be entirely
satisfactory as a foundation system. If we take it to be founded on a
first order axiomatisation of set theory, then we have first implicitly
accept the need for a hierarchy of types. Next, by chosing "first-
order" logic, we determine to do mathematics in just the first level of
this hierarchy, the individuals. Then we construct a set theoretic
hierarchy within this domain of mindividuals", and finally collapse
this hierarchy by slimming down function spaces until they become
homeomorphic with their domains. Having twice accepted a system almost
designed to prevent self-application, it is not surprising that some
mathematical sophistication is required to construct yet again a type
free notion of function application within this framework.

Even where the formalisation of classical mathematics is not required,
as in the work of Martin-L6f [Mar75,82] in formalising constructive
mathematics, and that of Constable in constructing formal systems for

* the verification of programs [Con80], constraining the ontology to be
hierarchic seems to have proven necessary to avoid inconsistency.

We choose to start from the beginning with a type free system. The
difficulty here is in giving any "mathematical" respectability to the
system. The term "mathematical" is now so strongly associated with
classical set theory, that an account of semantics which does not
ultimately result in denotations in classical set theory is in danger
of being considered not mathematical.

In constructing a foundation system, our ontological intuitibns are
crucial, and the indications are that the richness of classical
ontologies is incompatible with a natural account of self application.
In determining on a foundation we will first identify our domain of
discourse, which we consider an important step in ensuring consistency
in the foundation. Before we do this we will examine more closely the
idea of logical truth, since this provides additional motivation for
our selected ontology.

2.3 Logical pluralism and Conventionalism

Concern for single foundation systems has largely been displaced by a
pluralistic attitude to foundations. Logicians and Philosophers study
different foundation systems on their technical merits without feeling
bound to chose between them, Mathematicians are mostly able to work in
a way that can reasonably be interpreted in any of the classical
systems, and Computer Scientists feel free to adopt or invent any
formal system which suits their purposes.

These pluralistic attitudes have a philosphical counterpart in the
linguistic-conventionalist account of the status of logical principles.
This principle states (roughly) that a logical truth is true in virtue
of the meanings of the terms it contains, i.e. in virtue of accepted
linguistic conventions. Pluralism and conventionalism have in common
that they seem to support the view that logical truths are not
absolute, but are arbitrary.

If logical truth were entirely arbitrary, then it would likely be of
limited utility. Bowever, we know there to be, underlying the
plurality of informal and formal logics, some common principles which
we can claim to be absolute logical principles.

DTC/RBJ/011 * International Computers Limited, 23th June 1986 Page 7 of 24

423



0

Logical foundations and formal verification. DTC/RBJ/011 Issue 2

These principles are about conformance to rules. Either informally or
formally, we suggest, that the idea of logical truth depends upon
proof, that in the essence of the idea of proof is the view that proofs
are checkable, and that the method of checking proofs be effective.
There may be doubt about whether a statement has a proof, but given a
putative proof of a statement there must be an "effective procedure"
for testing whether it is indeed a proof.

We now know many languages within which effective procedures may be
described, (lambda calculus, combinatory logic, Turing machines,
recursive functions, Post productions...) and the fact that these have
been shown to be equivalent in expressive power gives us a basis for
claiming that the notion of effective computability is an absolute one.
It is from this that our notion of absolute logical truth derives. The
claim that a sentence is a theorem of a formal system is just the claim
that a particular effectively computable partial function over
sentences yields a token representative of "true" when evaluated on the
given sentence.

The primitive formalism which we describe below, and hence the various
languages which we construct from it, are capable of expressing and
proving just those propositions which indicate the result of applying
some effective procedure to some value.

2.4 Neo-constructive ontology

We now identify a domain of discourse and the properties we ifish to
express over this domain.

Since we are concerned to reason about the properties of computers and
their programs we choose a more or less arbitrary denumerable domain,
which we may consider as the collection of values storable in the
memory of some ideal computing device. Functions are to be represented
by conventions whereby the values in the domain may be interpreted as
rules describing some computational procedure. Properties or
predicates are identified with partial computable functions over the
values in the domain into some subdomain designated as representing the
truth values.

As an example, we select as a domain of discourse the free combinatory
algebra generated from the constants K and S under the binary operation
of application. By the use of an embedding of this domain into itself
and a reduction process over the terms of the domain we are able to
represent all partial computable functions over the domain using
elements in the domain.

The reduction process is effected by the rules:

u => U
((K u) v) => u
(((S u) v) w) => ((u w)(v w))
(u v) -> (x y) if u -> x and v -> y

Where u,v,w,x,y are arbitrary values in our intended interpretation,
and (u v) is the application of u to v.

->* is defined as the transitive closure of ->.

DTC/RBJ/011 * International Computers Limited, 23tb June 1986 Page 8 of 24

424



Logical foundations and formal verification. DTC/dlBJ/011 Issue 2

Elements may be encoded into the domain using the rules shown below in
section 3.6.

An element u of our domain is considered to satisfy the predicate
represented by an element v if the application of v to the encoding of
u, (which we write 'u') is reducible to K. i.e. if

(V 'U') =>* K

The true propositions, are those elements of our domain which are
reducible to K under the above reduction system.

3. PRIMITIVE FORMALISATION

3.1 Introduction

The primitive formal system is intended to be as simple 'as possible, so
that we may have confidence in its consistency, and in the correctness
of its implementation without either depending on proof in a less well
founded formal system, or on proof within itself.

The opacity of the syntax and the inefficiency of the proof rules is
acceptable at this level, both of these problems can be addressed
without logical extension.

The key characteristics required at this stage are simplicity,
consistency, expressiveness (with reference to what can be expressed,
not how it is expressed), and completeness.

3.2 Syntax

atom "SO I "K

term atom 0(" term term 0)"

Henceforth:
a,b,c... are metavariables ranging over atoms.
x,y,t,u,v,w... are metavariables ranging over terms.

3.3 Axioms

K

The 'standard interpretation"s of the terms "SO and "K" are the
individuals S and K, and the juxtaposition of two terms denotes the
application of the denotation of the one to the other. The algebra of
terms is therefore isomorphic to our domain of interpretation. The
axiom *I-K* indicates that *K* is our version of the proposition
"True".

Theorems of the form (u 't') may be interpreted as assertions that the
term t satisfies the predicate represented by the term u.

S

DTC/RBJ/011 S International Computers Limited, 23th June 1986 Page 9 of 24

*. 425



0

Logical foundations and formal verification. DTC/RBJ/011 Issue 2

3.4 Inference Rules

We first define the postfix substitution operator [t/al: 0

alt/al = t
bit/a] = b (provided b#a)
(u v)(t/al = (u[t/aJ v[t/al)

Our inference rules are then:
0

(K) tfu/al - t[((K u)v)/a]

(S) t[((u w)(v w))/a] I- t[(((S u)v)w)/a]

These rules are the inverse of the reduction relationship which
determines the truth of a proposition. They therefore mAke theorems of
just those terms whose denotation is reducible to K, and are therefore
sound and complete. Since neither of the inference rules permits the
derivation of an atomic theorem, "S" is not a theorem and the system is
consistent in the sense of Post.

3.5 Abstraction

In the following sections for illustrative purposes we make liberal use
of informal syntactic abbreviations. These are not a part of our
primitive formal system, but we expect in due course to deal with such
matters in fully formal ways. These include, dropping brackets *(taking

application as left associative), and using infix notation for some
dyadic operations.

First we introduce abstraction as a notational abbreviation.

I & ((S K) K)

We define [alt inductively as follows:

(ala I 0

[alb (K b)
provided ab

[a](u v) ((S [aju) (a]v)
[a,b~t • [a][b~t

and in general

[al,a2,...an]ta fall[a23...(anit

In definitions we may write: 0

a b a t

for

a a [b) t

DTC/RBJ/0ll I International Computers Limited, 23tb June 1986 Page 10 of 24

426 0



Logical foundations and formal verification. DTC/RBJ/0Il Issue 2

or:

a al a2 ... an Z t

for

a I (al,a2,...an) t

Now, in order to permit recursive definitions we introduce the fixed
point operator.

Sap F F F

Y F - Sap (X]F(XX)

Note that Y F = (X]F(XX) ([X]F(XX)) = F ([X]F(XX) [X]F(X)) F (Y F)

i.e. Y F is a fixed point of F.

Henceforth we will admit recursive definitions, writing:

F R E

instead of

F 4 Y [FIE

and

FXYaE

for

F A Y (F,X,YIE

etc.

* 3.6 Definitions for encodings

In this section we define an encoding of terms into normal terms. we
use the notation 't' for the encoding of a term t.

T - K

* FXY y

If X Then Y Else Z i X Y Z

X And Y & If X Then Y Else F

X Or Y a If X Then T Else Y

X -> y a If X Then Y Else T

X <-> Y a (X -> Y) And (Y -> X)

Not X a If X Then F Else T

<X,Y> Z . Z X Y

DTC/RBJ/O11 * International Computers Limited, 23th June 1986 Page 11 of 24

* 427



Logical foundations and formal verification. DTC/RBJ/Ol1 Issue 2

Fst X X T

Snd X X F

'K' <TT>

'Sl <T,F>

Mkapp X Y <F,<X,Y>>

'XY' K Mk_app 'X' 'Y'

Is_app X = Not (Fst X)

Fun X F Pst (Snd X)

Arg X = Snd (Snd X)

The encoding is naturally extended to encode any defined term as the
encoding of its definiens. This also allows double encodings such as
"<T,T>". Note that the encoding of terms cannot be expessed as a
term.

The decoding of encoded terms may now be defined as an example of a
term representing a predicate over terms:

Decode X 4 If Isapp X
Then (Decode (Fun X)) (Decode (Arg X))
Else If Snd X

Then K 0
Else S

A partial encoding algorithm, defined over the set (T,F) may be
defined:

Encode X = If X Then 'T' Else 'F'

Using the full encoding a every recursively enumerable set of terms RET
may be represented by some term REPRET such that:

for any term t, I-REP RET 't'
iff t e RET.

3.7 Remarks on the primitive formalism

The key characteristics identified in section 3.1 were simplicity,
consistency, expressiveness and completeness.

The system is evidently simple.

Its consistency in the sense of Post is immediately evident.

For each recursively enumerable subset of our intended domain of
interpretation there is a term which represents that set. For each
individual and recursively enumerable set of individuals there is a
term which represents the proposition that the individual is a member
of the set.

DTC/RBJ/Oll 0 International Computers Limited, 23th June 1986 Page 12 of 24

423



Logical foundations and formal verification. DTC/RBJ/011 Issue 2

In any formal logic, the ground terms which can be proven to satisfy
any given predicate defined in that logic, are recursively enumerable.
There is therefore a formal sense in which our logic is as expressive
as any formal logic can be. For any arbitrary formal system (assuming
a reasonable definition of "formal systema) the property of formulae
known as theoremhood is expressible in our primitive logic. We
therefore believe that the formalism is sufficiently expressive for our
purposes, and constitutes a foundation system on which sufficiently
rich theories can be constructed by the use of definitions only.

Finally, we can say that the system is complete in the following
sense: all the propositions expressible are provable iff true. We
cannot express classical negation in the system. i.e. there is no term
which denotes the set of unprovable terms. This reflects the fact that
the complement of a recursively enumerable set is not in general
recursively enumerable.

4. TYPES AND SPECIFICATIONS

4.1 Introduction

By adding "syntactic sugar" and by building a library of definitions,
our primitive language can be built up into a more sophisticated and
usable one. The process of building a functional programming language
in this way is well understood (or rather, the inverse problem, of
implementing a functional language using combinators). For details see
[Tur79a,b]. In our case the process is complicated by the need'to use
combinators for everything, whereas in implementations of functional
languages combinators have been used only for passing parameters, and
other environmental data. Examples of the use of combinators for
arithmetic may be found in [Cur72] or [Hin72].

In this section we consider what it is that we are to take for
sets, predicates, types and specifications, and how these may be
constructed in our piimitive formal system.

In first approaching this problem the value of the distinction between
predicates and types was not clear.

The argument against a distinction between types and predicates in this
context is as follows.

In logic, a primary role of types has been to constrain ontological
commitment in order to secure the consistency of a logic. This has
proved to be a simple and effective way of avoiding logical paradoxes.
More recently radical divergence from this limited role has been
adopted by extending the expressiveness of type systems and identifying
types with propositions ([Mar75,82],[Con8O).

The use of type systems for securing consistency inhibits abstraction
by guarding against the circularitieq inherent in polymorphism. For
this reason we have adopted a type-free logical core (which is
nevertheless consistent). In our view, whatever its technical merits,
the identification of types with propositions is counter-intuitive, and
a type system extended could not be more expressive than we would
expect to be by the use of predicates in our logic. It is therefore

* not clear what we could expect to express in our logic by introducing
types, which could not be expressed without them.

DTC/RBJ/0il • International Computers Limited, 23th June 1986 Page 13 of 24

429



Logical foundations and formal verification. DTC/RBJ/Oll Issue 2

We have in fact found (what we consider to be) sufficient reason for
introducing types as distinct from predicates, even though in our logic
both types and predicates will correspond (in their own ways) to •
recursively enumerable sets of terms. The reason lies primarily in the
opacity of terms representing predicates in our formalism. This
renders much more difficult the definition of functions whose domain is
intended to be a type of types, and makes all reasoning about types,
and hence the properties of functions very tedious.

We therefore propose to introduce a type system as an encoding of
predicates in a form which more transparently represents the intended
interpretation of the terms which are members of the type. This is
intended to provide the necessary transparency of the specifications
expressed in our system. It will also provide a means of expressing,
proving and applying derived rules of inference. We observe that,
while."syntactic sugar" might be used to make specifications more
transparent to the user, it is not sufficient to enable specifications
to be data values upon which operations may (transparently) be
performed.

It may therefore be noted that while strongly motivated by ideas
closely related to intuitionism, our formal system, and our notion of
'type' has very little in common with the presentation of intuitionism 0
due to Martin-Lof. [Mar75,82]

Within our framework any number of independent type systems could be
introduced without danger of inconsistency. Each system' would
represent an alternative encoding of the recursively enumerable sets of
combinatory terms. In this way we propose to provide coherent support
for the linguistic pluralism necessary to provide optimal application 0
development productivity.

In our system however, one type system will have a particular priority
in having been designed to express derived rules of inference, and in
having its type of derived rules built into an additional rule of
inference permitting the application of any rule which has been proven
sound.

By a derived rule in this context we do not mean derived rule in the
sense in which the term is used in LCF ([Gor79]) and its variants. In
these languages a derived rule is a procedure written in the
metalanguage ML, (possibly using a library of *tactics' and
"tacticals"), which computes a proof. In these systems there is no way
of shortening a proof, but there are powerful facilities for automatic
generation of proofs. In our system the primitive formalism is so
primitive (more primitive than LCF), that proofs, even if automatically
generated, would be too complex if genuine shortcuts were not
available.

We therefore propose that any rule of inference which can be proven
sound may be invoked to establish a theorem without the need to furnish
a proof in the primitive system. A similar feature has been included
in the Boyer-Moore theorem prover, [Boy8l].

DTC/RBJ/Oll * International Computers Limited, 23tb June 1986 Page 14 of 24

43*)



Logical foundations and formal verification. DTC/RBJ/Oll Issue 2

4.2 Recursive functions

Having chosen an encoding of terms into terms with distinct normal
forms (this is a necessary, but possibly not a sufficient condition) we
can represent recursive functions over terms, by terms which when
applied to the encoding of a term in the domain, reduce to the encoding
of the image of that term in the codomain.

That this is not possible without such an encoding follows from the
Church-Rosser theorem, which has the consequence that two terms with
similar normal form have the same image under any third combinatory
term. The encoding enables terms with the same normal form to be
distinguished by mapping them onto terms with distinct normal forms.
This encoding algorithm is not, of course, expressible as a term,
though there is a term (described above) which effects a decode (modulo
weak inequality), and encoding over limited subsets of the terms is

* expressible (notably over {T,F)).

In the following subsections we show how type systems may be
established by defining various operations over partial recursive
functions which we describe as *type constructors". These are strictly
the denotations of type constructors (unless we consider the special
type-system with the identity function as a semantic mapping). Our
terminology is still sub judice.

4.3 Recursive sets

By choosing representatives for the boolean values "true* and 'false',
(e.g. those given in section 3), we may represent characteristic

* functions by terms which represent boolean valued total recursive
functions. These characteristic functions are the characteristic
functions of recursive sets of terms.

Type constructors are easy to define over recursive sets. For example
the following constructors can easily be seen to be definable as terms.

The unit type constructor U such that:

U 't' is the characteristic function of {t}

for any term t, is just an algorithm for checking (intensional)
equality of terms.

For each dyadic truth function there is a corresponding operation on
recursive characteristic functions which can be simply constructed from
the term representing a (possibly strict) implementation of the truth
function (such as those in section 3.6), viz:

Union X Y Z • (X Z) Or (Y Z)

Intersection X Y Z • (X Z) And (Y Z)

Also:

Complement X Y A Not (X Y)

Under these operations recursive sets form a boolean algebra.

DTC/RBJ/Ol1 * International Computers Limited, 23th June 1986 Page 15 of 24

*431



Logical foundations and formal verification. DTC/RBJ/Oll Issue 2

Unfortunately, as soon as we wish to introduce sets which are not
decidable (with characteristic functions which are not total), the ease
of constructing operators over types disappears. In the case of 0
partial recursive functions non-strict logical operators are required,
which can only be defined over encodings of characteristic functions.

4.4 Recursively enumerable sets

Partial characteristic functions are mappings which for any encoded
term will yield either a term which reduces to the encoding of true, or
of false, or a term which has no normal form. Such functions may be
regarded as representing partial predicates, which correspond to pairs
of disjoint recursively enumerable sets.

These are effectively closed under all truth functional logical
operations and hence all these operations are themselves representable
as terms.

Since partial characteristic functions sometimes fail to terminate, and
the logical operators defined in section 3.6 are strict in their first
argument, the methods used in section 4.3 fail to give satisfactory
implementations of operations over recursively enumerable sets.

Furthermore, logical operations which are strict in neither argument
are not expressible directly as terms in pure combinatory logic. More
precisely, there is no term 0 such that for any pair of terms t,u:

I- 0 t u iff 1-t or 1-u

We can express this function however if we use encodings of t and u.
If t and u are available in an encoded form, then their non termination
can be guarded against by emulating interleaved evaluation. So there
is a term Ore (representing Or over encodings) such that for any pair
of terms t,u:

I- 't' Ore 'u' iff 1-t or 1-u

Furthermore, Ore can be defined in such a way that:

I- Not ('t' Ore 'u') iff I- Not 't' and I- Not 'ut

So that Ande (And over encodings) may be defined:

Ande X Y A Not ((Mk_app 'Not' X) Ore (Mk_app 'Not' Y))

(giving: Ande 'VX 'Y' - Not ('Not X' Ore 'Not Y'))

By the use of encodings we can therefore express non-strict logical
operations, with which well behaved operations over partial
characteristic functions may be defined. (To do this we need a partial
encoding function EncEnc, which can be defined over encoded terms. The
definition is omitted.)

(X Orp Y) Z a (4kapp X (EncEnc Z)) Ore (4k.app Y (EncEnc Z))

(giving: ('VX Orp 'Y') 'Z' I 'X 'Z'' Ore 'Y 'Z'')

DTC/RBJ/O11 0 International Computers Limited, 23th June 1986 Page 16 of 24

432



Logical foundations and formal verification. DTC/RBJ/011 Issue 2

(X Andp Y) Z A (Mk app X (EncEnc Z)) Ande (4kapp Y (EncEnc Z))

(giving: ('X' Andp 'Y') 'Z' - IX 'Z'' Ande 'Y 'Z'')

Orp and Andp correspond to the operations of union and intersection of
recursively enumerable sets.

Notp X Y 9 Not (X Y)

Notp provides a complement, but not a true complement. The classical
complement of a recursively enumerable set is not in general
recursively enumerable. The recursively enumerable set whose
characteristic function is obtained by applying Notp to some
characteristic function is not uniquely determined by the recursively
enumerable set determined by the characteristic function. An
interpretation of Notp in terms of operations on sets can only be given
if partial characteristic functions are taken to represent, not single
recursively enumerable sets, but pairs of disjoint recursively
enumerable sets. In this case the logical operators correspond to set
operations as follows:

<al,a2> Andp <bl,b2> => <intersection of al and bl,union of a2 and b2>

<al,a2> Orp <bl,b2> => <union of al and bl,intersection of a2 and b2>

Notp <a,b> => <b,a>

The logic thus obtained is not classical. For example, the law of the
excluded middle does not hold.

Nor is it intuitionistic, since

A = not not A

It is a three valued logic which, in its finite operations, corresponds
to the three valued logic due to Kleene.

A merit of considering types as partial characteristic functions in
this way, with complement defined, is that the total characteristic
functions are also closed under these operations, and the restriction
of these operations to total characteristic functions gives a true
complement and a classical logic.

Other type constructors can be defined from these.

Using the pairing operation defined in section 3.6 we can define
a product type constructor:

(X prod Y) Z a (Mkapp X (EncEnc (Mkapp 'Pst' Z))
Andp (Mkapp Y (EncEnc (k_app 'Snd' Z))

(giving: ('X' prod 'Y') 'ZI -f 'X '(Fst Z)'' Andp 'Y '(Snd Z)'')

DTC/RBJ/Oll * International Computers Limited, 23th June 1986 Page 17 of 24

433



Logical foundations and formal verification. DTC/RBJ/Oll Issue 2

And a dependent product type constructor:

(X dprod Y) Z 9 (Mk app X (EncEnc (Mk app 'Fst' Z))
Andp(Mkapp (Mk app Y (Mk app 'Fst' Z)) 0

(EncEnc (Mk app 'Snd' Z)

where Y is a function which maps a value of type X onto a type.

The dependent product type constructor takes any. type X, and a function
which maps elements of type X to types, and delivers the type of pairs
such that the type of the first component is X and the type of the
second is determined by the value of the first component under Y.
Dependent products types are important as candidate representatives of
abstract data types.

The idea for dependent product constructors comes (to me) from Martin-
L6f's ITT [Mar75,82], (where it is called "disjoint union of a family S
of types"), similar type constructors also occur (among other places)
in PL/CV3 ICon80] and Pebble (Bur84], from which our terminology is
derived.

4.5 Function spaces

The definition of function space constructors is more difficult.

We have so far been rather vague about which terms may be used as
representatives of recursively enumerable sets. This is pdssible
because all the type constructors we have illustrated so far behave
well even if all terms are taken to represent recursively enumerable
sets. Every term can be interpreted as determining a recursively
enumerable set of terms, and so we could take the "type of types* to be
the universe (represented by the term (K K)). When we come to
constructing function spaces however, we have found no construction
which is as insensitive to the representative chosen as is the case for
the previous constructors.

A key question, (but not one which affects the viability of our
proposal) is whether the space (A->B) of (total) computable functions
from a recursively enumerable domain A into recursively enumerable
codomain B is in general recursively enumerable. Similarly we would
like to know whether dependent function spaces (which we write A-?>B)
are recursively enumerable. If these spaces are enumerable, and if the
operation of forming a representative combinator for a (dependent)
function space from representative of the domain and codomains is
computable, then we need only to determine one of the combinators which
represents this computation and we have the basis for a maximally
expressive type system.

If the function spaces are not enumerable, or if the type constructors
are not effective then we will have to settle for an approximation
(from below, i.e. a subset) to these spaces for which effective
constructors can be discovered. We have not yet resolved this problem.

4.6 Derived rules of inference

Once we have decided how to define function spaces we expect to be able
to use the function space constructor in an extra inference rule which
will legitimise the use of derived rules of inference.

DTC/RBJ/011 * International Computers Limited, 23tb June 1986 Page 18 of 24

434



Logical foundations and formal verification. DTC/RBJ/Oll Issue 2

Since

*- Decode 'Z' iff I-Z

"Decode" is the type of theorems.

Consequently, for any encoded type X,

Decode ('X' -> 'Decode') 'Y'

and

I- X 'z'

implies

I-Yz

i.e. if Y maps elements of X into theorems, and Z is in X, then Y Z is
a theorem. We therefore propose to add this one further rule of
inference, which, provided our definitions are carried through
correctly, will add no further theorems but will permit shorter proofs.

We should then be able to establish type inference rules as derived
rules of inference.

4.7 Types as values

If types are identified with encodings of terms which represent partial
characteristic functions over encodings of terms, they are data values.
However, the form of such types bears little relationship to the
constructors which were used to construct the type. If we require to be
able to examine the type of an object, and discover with ease whether
or not it is a product (for example) then a more transparent
representation of types is required.

Such representations may be defined and may be given a denotational
semantics by furnishing a semantic mapping into our clumsy
representation. In particular, for any application language a type
system may be devised specifically to express the types in that
language, or to provide an extension of the programming language type
system sufficiently rich to serve as a specification language.

5. APPLICATION LANGUAGES
I

The expressiveness of our formal system is sufficient we believe to
define the denotational semantics of application development languages.
By providing a logically secure framework within which specialised type
theories with matching derived inference rules may be established, we
hope to enable a close fit between application languages and
specification languages. This may enable a development methodology in
which specifications are evolved into implementations by stages which
are supported by automatic verification.

DTC/RBJ/O11 •International Computers Limited, 23tb June 1986 Page 19 of 24

435



Logical foundations and formal verification. DTC/RBJ/011 Issue 2

6. IMPLEMENTATION

We provide here a very brief outline of how we propose to implement a
support environment using our foundation systems.

Combinatozb have been used in the implementation of functional
programming languages (Tur79a,79b]. The algorithm for reducing
combinators is also a proof tactic for theorems in our primitive logic.
To prove a putative theorem in our logic, we simply evaluate it. If it
evaluates to K, then it is a theorem, and by reversing all the
reductions we obtain a proof.

The system used by Turner differs from our sample primitive logic. It
does not attempt to reduce all computation to pure combinatory
reduction. The combinators are used instead of more traditional
methods of passing parameters by maintaining environments. In addition
to pure combinators, a combinator graph may include data values from
primitive value sets, and primitive operators on such values.

Furthermore, Turner uses more complex combinators than ours. His
implementation would not otherwise be sufficiently efficient to be
usable for any practical purpose. Even with these combinators and
primitive operations combinator implementations of functional languages
may be two orders of magnitude less efficient than fully compiled
imperative languages.

More recent work on the implementation of combinator reduction 'systems
has shown that the efficiency of implementation can be considerably
improved by compiling combinators into machine code [Joh84]. We
propose to use combinator graph reduction as an implementation
technique for a formal methods development environment (without
prejudice to the target execution environment).

In order to achieve reasonable efficiency we will make some adjustments
to the primitive combinators to permit an efficient mapping onto the
memory of a von-Neumann computer. We will also make provision for the
compilation of combinators of arbitrary complexity. This provision
will displace the use of built in data types and primitive operations.

We then have a machine which is attempting (and failing) to prove a
theorem of our primitive logical formalism. The theorem to be proven
is a term (held in a persistent store) part of which is an unbounded
structure representing all the data input to the machine (in the manner
of a lazy list).

a

The remainder of the term consists of two main elements. The first is
a function which may be regarded either as representing the combined
operating system and application development software of the machine or
as a derived inference rule. The second may be regarded either as a
functional database (as in [Nik85]) containing all the users data, or
as a compound proposition expressing the content of the users
'knowledge base*.

The theorem which the machine is trying to prove is the application of
the derived inference rule to the conjunction of the input data with
the knowledge base. The theorem proving strategy is essentially
reduction of a term of pure combinatory logic to its normal form, (the
theorems of our primitive logic are just those terms of pure
combinatory logic which are reducible to K).

DTC/RBJ/011 * International Computers Limited, 23th June 1986 Page 20 of 24

436



Logical foundations and formal verification. DTC/RBJ/Oll Issue 2

The hypothesis however has no normal form, ane the reduction prccess
• results in the generation of an infinite term. The head of this term

at any stage in the reduction consists of all the outputs of the
system, while the tail represents the knowledge base, the remainder of
the input list (new facts), and the operating system (inference rule,.
All of these are are iteratively updated during the evaluation process,
so that the changes to the knowledge base are the effects of the
commands occurring in the input list, and the output at the head of the
term grows as further information is presented to users.

The implementation of our formal system on this engine will in some
respects resemble that of LCF and its variants, with the following
modifications.

Firstly the primitive logic is type-free, and hence much simpler.
Secondly, the same language will be in use both for me'a-language and
object language, resulting in further economies. Also, as previously
noted, derived inference rules will be established after the manner of
[Boy8l], rather than as proof generation algorithms, this is essential
to achieving tolerable efficiency in the proof facilities. We will
support extensions to the abstract syntax to match the establishment of
abstract data types, and will allow flexibilty of concrete syntax as in
the Mule system (Nip85].

7. VERIFICATION

There are well known and serious problems in verifying verification
systems.

As a result of G3del's work [God3l], we know that a formal foundation
system cannot usefully be used to verify itself. We are therefore
bound ultimately to accept a formal foundation system which has not
itself been formally verified.

Our reductionist approach to foundations is intended in part as a
rational response to this situation. We suggest that confidence in our
ultimate formal foundations will be maximised in the following ways:

1. The formal system should be as simple as possible.

2. The system should be transparent to our intuitions.

3. Essentially the same foundation should be subjected to
theoretical scrutiny and practical exposure over a long
period of time.

Our confidence in the consistency of first order axiomatisations of set
theory is largely based upon their having survived over a long period
of time without having been found inconsistent. We believe that the
approach to foundations outlined in this paper satisfied points 1 and
2. We believe also that our formalism is sufficiently flexible to
underpin a wide variety of more specialised formal systems and that
this will increase its chances of receiving the exposure that will in
due time contribute to confidence in its sufficiency and consistency.
In fact we are essentially formalising recursive function theory, a
subject which has now had some 50 years of scrutiny.

DTC/RBJ/Oll * International Computers Limited, 23th June 1986 Page 21 of 24

437



Logical foundations and formal verification. DTC/RBJ/Oll Issue 2

Our foundational reductionist approach results in the step from one
logical level of the system to the next being achieved by definition
rather than axiomatisation. This converts problems of consistency into S
logically less severe problems of opacity. This way of building on
foundations is guaranteed not to compromise the consistency of the
system, but if theie dre errors in the definitions then the concepts
defined will not be the ones intended.

The implementation will be constructed in an analogous way. We
therefore expect to implement the core foundation system as a logically
secure bootstrap. This results in subsequent levels of development
being logically guaranteed not to compromise the consistency or
correctness of the implementation.

Implementation of higher levels of the system will also be provably
correct against their specifications, but this only begins to be
helpful once we have established specification languages which are
significantly more perspicuous than our implementation languages.

8. CONCLUSIONS

We have outlined an approah to logical foundations for the formal
development of computer systems which we believe when fully developed
will offer:

a) The highest possible levels of assurance of the correctness

of systems developed.

b) High levels of flexibility.

c) Economy of implementation.

This foundation offers a particular advantage in the exploitation of
abstraction, increasingly seen as an important tool for formal
development. We offer a foundation within which mathematical concepts,
without qualifications relating to cardinality, have denotations.

Considerable further work is necessary before we can be wholly
confident that this approach can be made to deliver what we believe it
to offer. It is inherent in our approach that once the definition of
the formal systems has been carried through in a fully formal way, an
inefficient implementation will be obtainable at trivial cost.
Provided sufficient care is taken in design, we believe that tolerably
efficient implementations will then be relatively inexpensive.

IS

DTC/RBJ/011 * International Computers Limited, 23th June 1986 Page 22 of 24

433



Logical foundations and formal verification. DTC/RBJ/0ll Issue 2

9. REFERENCES

[Atk85] Atkinson, Malcolm P.; Morrison, Ronald: Types, Bindings and
Parameters in a Persistent Environment. In: Persistent and

Data Types, Persistent Programming Research Report 16,

Univcrsity of Glasgow, 1985

(Boy8l Boyer, R.S.; Moore, J.S.: Metafunctions: proving them correct
and using them efficiently as new proof procedures. In *The
Correctness Problem in Computer Sciencem (R.S.Boyer and
J.S.Moore, eds.). Academic Press, New York 1981.

[Bur84] Burstall, R.; Lampson, B.: A Kernel Language for Abstract

Data Types and Modules. Proc. Int. Symp. on Semantics of Data
Types, 1984.

*Cona8O Constable, R.L.: Programs and Types. Proceedings of the 21st
Annual Symposium on Foundations of Computer Science.
Syracuse, N.Y. 1980.

(Cur72] Curry, H.B.; Hindley, J.R.; Seldin, J.P.: Combinatory Logic
Volume II. North Holland Publishing Company, 1972.

[God3l] G6del, Kurt: On Completeness and Consistency. In (Hei67].

[Gor79] Gordon, M.; Milner, R.; Wadsworth, C.: Edinburgh LCF.
Springer-Verlag, Lecture Notes in Computer Science, Vol. 78.

[Hat82] Hatcher, William S.: The Logical Foundations of Mathematics.
Pergamon Press 1382.

(Hei67] van Heijenoort, Jean: From Frege to Godel, a sourcebook in
Mathematical Logic, 1879-1931.
Harvard University Press, 1967.

[Hin72] Hindley, J.R.; Lercher, B.; Seldin, J.P.: Introduction to
Combinatory Logic. Cambridge University Press, 1972.

[Joh84] Johnsson, Thomas: Efficient Compilation of Lazy Evaluation.
SIGPLAN Notices Vol.19, No. 6, June 1984.

[Lama0] Lambek, J.: From lambda-calculus to Cartesian Closed
Categories. In: To H.B.Curry: Essays on Combinatory Logic,
Lambda-calculus and Formalism. Edited by J.P.Seldin and
J.R.Hindley, Academic Press 1980.

[Mar75] Martin-L5f P.: An intuitionistic theory of types: predicative
part. In Logic Colloquium '73, pp 73-118, North Holland 1975.

(Mar82] Martin-L6f, Per: Constructive Mathematics and Computer
Programming. In Logic, Methodology and Philosophy of Science,
VI (Proc. of the 6th Int. Cong., Hanover, 1979), North
Holland Publishing Company, Amsterdam (1982).

[Nik85 Nikhil, R.S.: Functional Databases, Functional Languages.
In: Persistent and Data Types, Persistent Programming
Research Report 16, University of Glasgow, 1985.

DTC/RBJ/01l • International Computers Limited, 23th June 1986 Page 23 of 24

439



Logical foundations and formal verification. DTC/RBJ/0ll Issue 2

(Nip85] Nipkow, T.N.: Mule: Persistence and Types in an IPSE. In:
Persistent and Data Types, Persistent Programming Research
Report 16, University of Glasgow, 1985.

[Qui63] Quine, W.V.O.: Set Theory and its Logic. Harvard University
Press, 1963.

[Rus03] Russell, B.: The Principles of Mathematics. George Allen &
Unwin Ltd., 1903.

(Ruse8] Russell, B.: Mathematical Logic as based on the Theory of
Types. American journal of Mathematics 30, 222-262. Also in
(Hei67].

(Sco70] Scott, Dana: Outline of a Mathematical Theory of Computation.
Oxford University Computing Laboratory. PRG-2,, Nov 1970.

[Tur79a] Turner, D.A.: Another Algorithm for Bracket Abstraction.
Journal of Symbolic Logic, Vol. 44, No. 2, June 1979.

[Tur79b] Turner, D.A.: A new implementation technique for applicative
languages. Software - Practice and Experience, Vol. 9, 31-49
(1979) 0

[Tur84] Turner, D.A.: Functional programs as executable
specifications. Phil. Trans. R. Soc. Lond. A 312, 363-388
(1984).

DTC/RBJ/Ol1 International Computers Limited, 23th June 1986 Page 24 of 24

440



Trusting Compilers - A Pragmatic View

Scott Hansohn

Honeywell Secure Computing Technology Center
2855 Anthony Lane So.

Suite 130
St. Anthony, MN 55418

(612) 782-7144
Hansohn HI-Multics.ARPA

Life-critical and security-related applications require a high-degree of as-
surance that the software will behave properly. The use of high-level lan-
guages and verification environments automate the software development

process, and decrease the probability of human error. However, the "cor-
rectness" of the resulting system becomes dependent upon the integrity
of the tools.

" Although the use of low-level languages (e.g. assembly) is labor intensive,
the software manager is able to use design reviews and code walkthroughs
to avoid placing complete trust in any one individual. With high-level lan-
guages, reviews take place at the source code level, but gaining assurance

that the machine code actually does what the source code says it does is
usually an act of blind faith.

" This paper considers some of the issues that must be addressed when
selecting a compiler for an application requiring a high degree of assurance.

Keywords: Security. Ada Implementation Issues, Software Assurance, Trusted Sys-
tems.

1 Background

For life-critical or security-critical applications, we would like to have some
degree of confidence that the application software performs in a known manner.
At the start of the program, requirements stating what the system is to do are
defined; at the end of the program we have a working system. The question is,
"what assurance do we have that the resulting system operates in accordance

with its requirements'?
Techniques have been developed for formally specifying what we want a

system to do (specification/assertion languages), for specifying how a system is

to do it (programming languages), and for proving a correspondence between
the "what" and the "how" (verification tools).

Verification techniques are useful for providing some level of assurance that
the software engineer has not made any design errors by ensuring that the source

4/1



0

0

code conforms to its specification. However, the software that actually makes
the system work (machine code) is not the software that was verified (source
code). Errors in the source-to-machine code translation process can invalidate
the proof.

One problem is that "compilers contain bugs" tends to be the rule rather
than the exception. There doesn't seem to be any such thing as an "error-free"
compiler. A typical mode of operation is: find the bug, fill out a bug report
and send it to the vendor, and then find a workaround so that development can
continue. Since the engineers using the compiler are rarely intimately familiar
with it, when something goes wrong they are left to rely on engineering skills,
instinct, and blind luck to isolate the error and collect enough information to
write a bug report that is more specific than "It doesn't work". Worse yet, the
error could go undetected and end up incorporated in the final system.

Some languages (such as Ada) have compiler validation suites, but even

these cannot assure that the compiler will never make any translation errors.
There is a possibility that verification techniques could be applied to compilers
and other software development tools to prove that they are proof preserving
transforms, but this is beyond the current state of the art.

So the implementor is faced with the following dilemma. On the one hand,
high level languages can help to reduce life cycle costs by automating much
of the code generation process and help to eliminate several types of human
errors. On the other hand, it forces a greater dependency upon the software
development tools, resulting in less control over the generated code. The tools
(and especially the compiler) become black boxes and must be blindly trusted.
It is difficult to check the work of these tools. It is difficult to determine whether
or not this trust is warranted.

2 Compiler Errors

As mentioned earlier, compilers tend to be complicated programs and frequently
contain errors. Some errors may be inconsequential. Some may be inconvenient.
Some may be critical. When selecting a compiler, the software engineer must
attempt to determine the probability of that compiler containing a critical error
- one that could jeopardize lives or compromise information. This risk must
be weighed against the potential benefit of using that compiler (lower life cycle
cost, better design, etc.).

There are no objective ways of determining what this probability is. In the
end it comes down to a judgement call. A validation suite will ensure that one
class of errors has been eliminated, and will decrease this probability. Thorough
testing by the compiler vendor will also provide more assurance.

Maturity is another criteria which may be used. If the compiler has suc-
cessfully been used on a variety of projects, it is (usually) reasonable to assume
that many of bugs have been worked out. Testimonials can also provide useful

1,42



information.
The following sections describe some types of errors which may cause a

source code proof to be invalidated.

2.1 Mapping Errors

A compiler is responsible for mapping high level source code functions onto
the more primitive instructions of the target machine. The more nebulous the
definition of the language and the machine instruction set, the more subject they
become to interpretation, and the more likely the chance for an interpretation
error.

For example, typically the only documentation available for defining a ma-
chine instruction set is a programmer's reference manual for that machine. This
sort of documentation tends to be descriptive rather than definitive. It does not
define the exact behavior of the machine.

Without an accurate formal semantic definition for both the source language
and the machine language, it is impossible to perform any meaningful check of
the accuracy of the mapping between the two. In the case of Ada. ongoing efforts
to develop a formal semantic definition of the language are an important first
step. In the case of the target processor, more emphasis must be placed on the
use of formal verification techniques on processor design and implementation.
(For more information on these techniques, see 1'.)

2.2 Trojan Horses

As Thompson noted, it is impossible to Jetermine exactly what a program
is doing by source code inspection 12 . He further suggests that "You can't
trust code that you did not totally create yourself". Today it is rare that an
application software developer will build a compiler rather than buy one "off
the shelf". The application developer must now trust the people working for the
company that developed the compiler. It is also necessary to institute stringent
controls to protect this compiler from being tampered with. All other tools used
for software development must be similarly trusted and protected.

One approach that has been suggested to reduce the probability of "Thomp-

son attacks" is to freeze the software development configuration at the beginning
of the program. The reasoning behind this is that this sort of attack re.quires
knowledge of the application program in order to determine exactly where to
place the trojan horse to get the desired effect. An obvious problem with freez-
ing the compiler is that it becomes impossible to fix any compiler bugs that are
detected during the development effort. So the designers must decide at the
beginning of the project whether or not they can live with a particular snapshot
of the compiler. Compiler maturity is an obvious consideration when making a
"lock in" decision such as this.

443



2.3 Security Considerations

A good design practice is to keep your critical functions as simple as possible
so that it is easier to make sure that they work properly. This practice is appli-
cable to trusted (security critical) functions in an Al secure computer system.
Similarly, it is desirable to keep the tools used to develop critical software as
simple as possible to increase the probability that they will function correctly.
The more complex the programming language, the more complex the tools and
the greater the liklihood of errors.

Considering Ada for the moment, there are many language features that

are simply not needed for the implementation of security kernels or trusted
software. For example, Anderson [31 has pointed "there exists a quite usable (for
the Kernel) subset of Ada that requires virtually no [runtime support librarys".
It seems reasonable to assume that it may be possible to define a subset of
the language that not only minimizes the size of the runtime support library,
but also minimizes the size of the compiler, and is still useful for implementing
highly critical functions. Since it is likely that formal verification techniques
will be applicable to small compilers before they are applicable to large ones,

this may provide a powerful interim tool.

3 Conclusions

There has been a fair amount of interest in determining the amenability of
Ada to formal verification techniques. But little attention has been paid to
ways of ensuring that the compiler performs an accurate mapping of a high-

level language onto the low-level language of the target machine. The reality of
the situation is that it is entirely possible that the compiler or other software
development tools could act to invalidate the proofs of the source code.

One technique that has become increasingly popular for automated formal
verification is to use the verification tools as proof checkers rather than relying

on them to generate the proof directly. Unfortunately, it is not possible to
use a compiler as a checker for hand-compiled code. Similarly, checking the

code produced by a compiler (especially an optimizing one) is difficult and time
consuming. The software engineer is forced to depend upon the tools.

For life or security critical applications, a risk analysis must be performed to
determine the trustworthiness of all personnel, tools, and materials involved in
the development effort. Tools such as compilers are invaluable for automating

much of the software implementation process, but it is difficult (if not impossi-
ble) to determine whether or not they are deserving of the trust required to use

them for critical applications.
The final decision must be made based on a cost/assurance tradeoff. The

potential life-cycle cost reductions which may result from the use of a particular
compiler must be estimated. The effect that relying on that compiler will have
on the assurance of the correct operation of the final system must be assessed.

444



These figures must be compared in the context of the particular application to
determine whether the benefits outweigh the risks.

It is important to not lose sight of the fact that the use of verification tech-
niques is not an end, but rather a means toward increasing assurance in the
correct operation of a system. The correctness of the resulting system depends
on other factors as well.

4 References

1. "FM8501: A Verified Microprocessor", Warren A. Hunt, Jr., Instititute for
Computing Science, The University of Texas at Austin, Technical Report
47, December 1985.

2. "Reflections on Trusting Trust", Ken Thompson, Communications of the
ACM, Vol. 27, No. 8, August 1984.

3. "Ada's Suitability for Trusted Computer Systems", Eric R. Anderson,
Proceedings of the 1985 Symposium on Security and Privacy, Oakland,
Ca., April 22-24, 1985.

0

0.4



CfC)

U.-

0

0 a

E) 0
00 L

-U')

0) 00

0

44



0

0

>mqh 0
U-
* -

2

0

0

0

0

Cu
0)

* - 0

0

448 0



Sj

0 > j

cc z
I.-

< 1I-

0 0w 
I 0

I-

w 00
w 

__0)c .0

z DJ 0 0

z L 0 wE

* 
449



z R0wD
E 0

w
zo 0w
F- 00 0

U jm 0 W0
C)) -J 0. 0

on z 0
wi w- 0. _

uI( 0

LL 0ui0 C.

45')



0

00

o 0

>o 0

o =U
01 0L Cl)

I-) zl
x 0 z

LL

x

or w LL)ZI

451~



m cc

Cl)
-j
0
0

no-of

00

-LJ

I0.M

0)

452



0 f

oL Cl)

I-
Cl)
< wi

z L
*Cl) 0

-0 >

o Z z j

FLI 0

Cl) z
0 D
0 u.).L

00

453



w z

cc 0

II 0 c

/ z
Iz

ww
wcn

ww
w w

0 00

0.0
w LLw Cl Z C

57 M M <454

00



00

00

Cl,

00

U) 0

E

V5. 0

0, E
C1) 0

00

00

E50



-U'

0
I-

CC,

00

w

Iw
OmIw

0
0L
M

456



Cf)
le U) l
F- z a: () C/)

LU 0 Li t
w j

= 0
F- 0

F- < z=- ZCI
F- WC
LU) w* U l

U- J

F- Cl)>

0m C/) >

o Z U CCl) U

*r~ mmmi w ~0 l
(mm * 0 0-

z
0

457



a-
0

Ul)
a w cz
w u

W0 W
Z

_l w wU

Dm < 000
0 0 I-) C/ I r

00 0 0 L

z o M

C/)

458



i-i

An Introduction to The Draft Formal Definition of AdaS

Egidio Astesiano

Universita' di Genova
Dipartimento di Matematica
Via L B Alberti 4
1-16132 Genova
Italy

and

Jan Storbank Pedersen

Dansk Datamatik Center
Lundtoftevej IC
DK-2800 Lyngby
Denmark

® Ada is a registered trademark of the U.S. Government
(Ada Joint Program Office)

This work has been partly supported by the CEC MAP project:
"The Draft Formal Definition of ANSI/MIL-STD 1815A Ada".

459



1-2
S

1. Introduction

This paper provides a short introduction to the project "The Draft Formal Defi- S
nition of Ada" and the results obtained so far. The first section gives an
overview of the project. The second and third sections are more technical and
contain introductions to the results obtained in the areas of static semantics
and dynamic semantics methodologies. The static semantics formally defines the
rules that Ada programs must obey and that correspond to compile time checks.
The dynamic sematics defines the run-time behaviour of an Ada program.

2. Project Background and Status

The official definition of Ada, Reference Manual for the Ada Programming Lan-
guage [RM], contains more than 300 pages of technical English. It is known to 0
contain inconsistencies and ambiguities, some of which can be attributed to the
English language.

To resolve inconsistencies and to clarify ambiguities, the AJPO in co-operation
with ISO has set up the Language Maintenance Committee (LMC), from which com-
ments are passed to the Ada Board (AJPO) and to ISO/TC/97/SC22/WG9 for approval, S
before becoming official. But the task of making such vast amount of English
text consitent and unambiguous is herculean, and it should be facilitated by
a formal definition of Ada (an AdaFD).

In saying this, it should be pointed out that an AdaFD is not to be seen as a
replacement of the natural language description, which is able to reach a much •
larger audience, but as an aid in the precise definition of Ada and in the
clarification of the natural language description.

These considerations have led the EEC to sponsor the Draft Formal Definition of
ANSI/MIL-STD 1815A Ada, which aims at making a formal definition of Ada as it is
described in the reference manual, pointing out inconsistencies and ambiguities;
but attempting to resolve these is outside the scope of the current project.

The first part of the project was a test phase in which an underlying model was
constructed, reflecting the structures of Ada. A method and a meta-language
for the definition were defined with the aim of getting a mathematically
well-founded frame which is suitable for the definition of Ada. Finally, a
trial formal definition of a subset of Ada was made in order to assure the
expressive power of the proposed techniques. The trial definition has now
been completed and is documented in [DDC, CRAI 86).

The second part of the project is the full formal definition of Ada. This is
the first attempt to give a precise formal definition of a language the size
of Ada, but it will be facilitated by the knowledge that was obtained in the
test phase. A preliminary study will be made of the feasibility of using the
AdaFD to prove certain aspects of the ACVC test suite.

In parallel with the actual development of the AdaFD, a natural language de-
scription of the AdaFD will be made, and the formulas will be cross-referenced
with their corresponding paragraphs of the reference manual. The natural
language description will be in English, but due to the formal definitions'
independence of natural languages it would have been easy to derive descrip-
tions in other languages (Danish, Italian, Japanese, French, etc.).

460



1-3

Finally in connection with the scientific work, tools will be developed for
writing, checking, and maintaining formulas, for cross-referencing, and for

* browsing the reference manual.

The project is carried out by:

Dansk Datamatik Center Denmark (main contractor)
CRAI Italy (contractor)

• I.E.I- C.N.R. Italy (sub-contractor)

Furthermore, consultants are used from the universities of Pisa (Prof. U.
Montanari) and Genoa (Prof. E. Astesiano and Ms. G. Reggio) and the Technical
University of Denmark (Prof. D. Bjorner, Dr. H. Bruun and Dr. H. H. Loven-
green).

3. Static Semantics Definition Methodology

Formally expressing the static semantics of a programming language is normally
either done using an attribute grammar approach like [J. Uhl et al 82] or using
a syntax directed denotational style like (Bjorner & Oest 80). Within this
project, it was felt that the latter style is easier to comprehend for the human
reader and easier to relate to the natural language description of rules and
conditions stated in the RM. We have, hence, chosen an approach following this
style.

3.1 Well-formedness

Following the approach chosen, an Ada static semantics can be considered to be
just one large function that given any complete Ada program delivers the boolean
value true or false depending on whether the program is statically correct.
Since, however, Ada is fairly large (many syntactic productions) and complex
(many semantic rules to be obeyed), it is natural to decompose the function
into a number of smaller functions, each expressing the well-formedness of a
smaller unit.

In the case of Ada with separate compilation, a library etc., the concept of
"a program" is not as closely bound to a particular piece of syntax as in most
languages. An Ada program is made up by a main program and the units needed
from the library. Hence, the concept of a library and the rules for when and
how a compilation affects the library becomes a part of the static semantics.
This implies that the overall static semantics cannot be just a "large boolean
function" but will consist of both the traditional boolean well-formedness
formulas applying to compilations, compilation units and parts thereof, using
the current library; and formulas describing the effect on the library of

compiling a list of compilation units. The latter have, however, not been

included in the trial definition.

461



1-4

3.2 Abstract Syntax

The syntactic units themselves can either be described by their concrete syntax
or using an abstract syntax. In this definition we have, following the tradi-
tion of [BjoLner, Oest 80], used an abstract syntax, called AS1. The abstract
syntax is close to the concrete syntax in that all constructs that cannot be
distinguished without a semantic analysis are not assumed to be disambiguated
in AS1, e.g. one cannot in all cases syntactically distinguish between a
function call, an indexed component and a type conversion.

The abstract syntax is hence derived from the concrete syntax in a straight-
forward manner. Since we are using a number of abstract data types (see
section 3.4) and some of these have operations using AS1 constructs as
parameters, we have chosen to express AS1 itself as a number of abstract data
types - one for each production rule of the grammar; so that each of the 0
abstact data types has a main sort corresponding to a domain normally defined
by an abstract syntax. This means that the abstract data types that refer
to AS1 constructs need only contain an enrich 'some abstract data type from
AS1' + ... by ..., and they will then be able to use the sorts and operations
(selection, composition and decomposition).

3.3 Syntax Directed Approach

Letting the decomposition of the formulas closely follow the structure of AS1 is
normally referred to as syntax directed, and that approach has been adopted
within this definition since it makes the relation between the formulas and the
LRM simpler.

3.4 Semantic Information and Data Types

The well-formedness of a syntactic sub-part of an Ada program generally depends
on the context in which the sub-part occurs. This means that when one, as stated
earlier, wants a decomposition of the formulas, the formulas need information
from the context in order to express the (local) well-formedness. This informa-
tion could of course be provided by having the abstract syntax representation of
the whole program (including package STANDARD and all the (predefined) library
units) as an additional parameter when expressing the well-formedness of the l

construct. Even with all that information, it would be difficult to determine
for instance the set of visible declarations at the point of the construct whose
well-formedness is to be expressed. A better solution is to have a less syntac-
tic and more semantic parameter to the well-formedness formulas.

The above arguments have lead to the introduction of an auxiliary data structure
called 'the surroundings'. In order to keep a clear distinction between the for-
mulas defining the well-formedness and those building, maintaining, and ex-
tracting information from 'the surroundings', this data structure together with
all formulas operating upon it has been made into a data type called SUR. This
means that the data type SUR will provide the well-formedness formulas with a
number of sorts (descriptors of different kinds) and operations thereon.

462



1-5

Using such a structure containing information relevant at any point of an Ada
program in our opinion places those persons defining the structure under an

* obligation to include only information that is actually necessary and in a form
that is as close to the Ada concepts as possible in order to avoid confusion.
Furthermore, we adopt an applicative (functional) style for the well-formedness
functions so that they will always have 'the surroundings', or information ex-
tracted from it, as explicit parameters so that no changes to the structures
will be made that are not immediately visible to the reader.

The surroundings itself can be decomposed into smaller data types each handling
the description of a particular aspect of Ada.

Overload Resolution

Having introduced the concept of data types makes it natural to use such data
types also for describing properties that are not directly part of the
surroundings.

One central Ada concept in particular seems to be suited for being handled by
such a data types namely overload resolution, in particular the part expressing
the conditions under which overloading can be resolved. The data type
EXPRDESCR defines the structures (expression descriptors) and operations
necessary to handle overload resolution.

Scope and Visibility

One important part of the surroundings is that which describes all declarations
in scope at any point of an Ada program and also keeps track of which declar-
ations are actually visible directly or via selection. This is handled by the
data type NAMEVIS.

Nested Program Structures

Another part of the surroundings (ENCLCONSTRUCTS) is used to describe the
nesting of program structures. It is used when expressing that given con-
structs may only occur within certain composite constructs, e.g. a return
statement with an expression may only occur within a function body but not with-
in any inner body of a task, package or generic unit.

Generic Units

In order to handle the information needed to express the parameter matching con-
ditions and the information neccessary to construct the new surroundings after
generic instantations, especially the implications on NAME VIS (a new unit is
introduced and new local types are created etc.), a data type GENERICS, that is
used by SUR, has been introduced.

463



1-6

Entity Descriptors

Within the NAME VIS data type, descriptors for all explicitly or implicitly de-

clared identifiers are present. The individual descriptors are defined by the
data type DESCR. The data type offers operations for creating descriptors based
on the constituent parts and for extracting the information (later) when needed.

Operations on Types

Each type in Ada has a set of operations that are derivable. They include the

basic operations, the predefined operators, the derivable user-defined subpro-
grams and in the case of an enumeration type, also the enumeration literals. To
keep track of the derivable operations and operations like assignment, that

do not overload subprograms, a data type TYPE-OPERATIONS is introduced.

Types and Subtypes

In order to faciliate type checking, all types are given a unique identifica-

tion. Also information on the internal structure of composite types, for
example the index subtypes of an array type, is associated with a type in the

form of a so-called 'typestructure'. Finally, subtypes are characterized by
their (base) type and an optional constraint descriptor. All of this is defined
in the data type TYPES.

Values

A simple data type called VALUES is introduced to handle the Ada values needed

in the static semantics definition for static index constraints, choices etc.

Dependences between Data Types

As mentioned earlier, the data type SUR depends on all the other data types; but

also among the other data types dependences exist. Ideally, the data types
would constitute a hierarchy with VALUES and ID (from AS1) at the bottom, SUR

at the top and all the others topologically sorted (following the enrich re-

lation) in between. This is, however, not possible when reflecting the concepts

of Ada. Let us consider the following example:

The data type TYPES describes the structure of all types including in particu-

lar task types.

The DESCR data type uses TYPES (primarily the sort Subtype) in order to de-

scribe declared entities. Such an entity can for example be a declared vari-

able, a formal parameter or, for this example, an entry in which case the

descriptor contains information on its formal part.

These entry descriptors however constitute a natural part of the type struc-

ture of a task type which is defined within TYPES.

Hence, the specification of DESCR contains an 'enrich TYPES' and TYPES con-

tains an 'enrich DESCR'. This is, however, only a mutual recursion between
the specifications of the data types and the specifications will in the par-

ticular cases used in this definition still denote well-defined data types.

464



1-7

Additional Data Types

Most of the above described data types provide several sorts to the outside
world. For the final definition, we are considering sub-dividing the data types
further so that each of them only exports one or a couple of sorts. This would
also make each of the data types smaller and, hence, facilitate getting a full
understanding of their contents.

Defining Data Type Operations

Currently, the operations of the data types are described as functions within a
particular model of the data type. Splitting the data types into smaller ones,
may make it feasible to express the operations in terms of axioms, thus yielding
a more abstract description of certain data types, but without affecting the
rest of the static semantics.

4. Dynamic Semantics Definition Methodology

4.1 The Problem

The major difficulties of a formal definition of Ada are encountered in the dy-
namic semantics. The fundamental difficulty is due to the concurrent structure,
which is not only far more complicated than that of previous languages, but
also deeply mixed and interfering with the sequential aspects of the language.
The problem of interference makes for example the semantics of an expression a
very complex object, since for evaluating an expression some tasks and proce-
dures can be started, and hence all the facets of semantics have to be taken in-
to account. Not even the evaluation of a variable, since variables are poten-
tially shared, can be done in isolation without considering the overall environ-
ment.

However, the problems with Ada are not confined to the interference problem: im-
plementation dependent features, incorrect constructs anderroneous executions,
interaction of a program with the external environment (e.g. external flags) are
some of the new aspects to be tackled. Because of these problems the previous
valuable attempts of a formal definition of Ada (Inria 1982, Dewar et al. 1983,
Bjorner & Oest 1980) have failed on some aspects of the dynamic semantics. A
completely new approch was required and that has led to use of a new methodolo-
gy, the SMoLCS methodology (see Astesiano & Reggio 1986 a, 1986 b, Astesiano et
al. 1986), which seems to handle most of the above problems satisfactorily.

4.2 The Underlying Methodology: SMoLCS

For the SMoLCS semantics of concurrent languages, the SMoLZS methodology is ba-
sed on a two-step approach, combining a denotational overall schema with alge-
braic techniques for the specification of abstract data types, here applied to
the specification of concurrent systems, which are formalized following the
SMolCS operational schema.
Essentially the first step connects the abstract syntax to an underlying model
for concurrency, formalized in a suitable language for describing processes
(behaviours) and their mutual interactions in a concurrent system. This is done
by a set of denotational clauses, where in a typically denotational style
each well-formed construct of the source language has associated a term in
another language. 465



1-8

Altogether the denotational clauses can be seen as defining, inductively on the
structure of the abstract syntax, a syntax-directed translation into an inter-
mediate language for representing processes and concurrent systems.
The approach goes further. The semantics of the intermediate language is given
by the algebraic specification of a concurrent algebra (the second step), repre-
senting a concurrent system modelling program executions.

Following the SMoLCS approach for the specification of concurrent systems, a

concurrent system is a labelled transition system built from some component sub-
systems; each subsystem is in turn modelled as a labelled transition system.

A state of a concurrent system is modelled as a set of states corresponding to

the subsystems plus some global information, the trasitions are inferred from

the transitions of the component subsystems in three steps: synchronization,
parallelism, and monitoring.
- Synchronization defines the transitions representing synchronized actions of

sets of subsystems and their effects on the global information.
- Parallelism defines the transitions representing admissible parallel execu-

tions of sets of synchronized actions and the compound transformations of

the global information (mutual exclusion problems, for example, are handled
here).

- Monitoring defines the transitions of the overall system respecting some ab-

stract global constraints (like interleaving, free parallelism, priorities,
etc.).

This SMoLCS schema is expressed in an algebraic parameterized way so that every

instantiation on the appropriate parameters, defining the information for syn-

chronization, parallelism and monitoring, is an abstract data type.
More precisely the definition of a SMoLCS specification of a system is modular, 0
hierarchical and parameterized.

A pragmatic advantage of this parameterized approach is that it is enough to

give the user the directions for the specification of the parameters. An ap-

propriate friendly syntax has been developed for encouraging structured and cor-

rect specifications. Moreover, some rules are given ensuring the existence of

initial models for each specification.
Together with an initial algebra semantics, corresponding to an operational se-

mantics, the SMoLCS approach supports, with explicit linguistic constructs, the

definition of an observational semantics, again via a parameterized abstract

data type specification, where the parameters correspond to a formalization of

the observations. Every instantiation of such schema admits a terminal model,

the Concurrent Algebra, in which two states of the concurrent system are equi-

valent if and only if they satify the same observations; moreover, the underly-

ing mathematics guarantees that every subcomponent of the state gets an obser-

vational semantics.
Thus the terms of the intermediate language, obtained by the denotational clau-

ses in the first step, can be interpreted in the concurrent algebra. In this

way the denotational clauses define a homomorphism from the algebra of the ab-

stact syntax into a semantic algebra, some carriers of which are the carriers

of the corresponding sorts in the concurrent algebra.

466



* 1-9

Some advantages of this approach are:
- in the first step it is brought to evidence what is truly sequential and

what is hiddenly concurrent, thus resolving the basic interference between
sequential and concurrent features;

- the algebraic technique of the second step permits a high level of modulari-
ty and abstraction in the definition of the many structures encountered in a
language; moreover, it also allows one to express the dependence of the se-
mantics on some parameters formalizing the implementation dependent fea-
tures;

- the observational semantics allow one to represent different semantics de-
pending on what we want to observe of a program and to abstract from the de-
tails of the description of the transitions of the concurrent system, which
on the other hand is needed, if we want to keep a close local correspondence
with the usually informal operational approach of a language reference ma-
nual;

- since the specification of the concurrent system embodies an operational
view, seeing it as a labelled transition system, also an alternative opera-
tional approach to the semantics of the concurrent system can be taken: the
axioms can be interpreted as defining labelled transition systems, to which
we can then associate observational equivalences directly, a' la Milner
[Milner 1980, 1983].

4.3 Overall Structure for Dynamic Semantics.

The overall strucutre, following the SMoLCS methodology, consists of the deno-
tational clauses (1st step), of the concurrent algebra (2nd step) and of auxi-
liary structures.

Denotational Clauses

we assume as a starting point an abstract syntax, AS2, which is the result of a
transformation of AS1. This transformation (e.g. solving overloading, assigning
unique static identifiers) is performed in order to make the dynamic semantics
clauses simpler, so that they can really deal with dynamic issues.
Thn to every syntatic construct a formal clause is associated, using a denota-
tioial style.
To a program the clause associates, given some global initial information, the
initial state of a concurrent system modelling the program execution. To every
other construct, which is then a part of a task (including the main task corres-
ponding to a program), the corresponding clause associates, given some local in-
formation, local to that task, a behaviour, i.e. an expression which corresponds
to a process, a fragment of the activity of that task.
The association is compositional, inductively on the structure of the construct.
A formal clause is split into parts, and an explanation in natural language is
given following the splitting closely, so that one can have a quite precise de-
scription of the clause even ignoring most of the formalities used in the
clause.

467



1-10

Auxiliary Structures

As usual in denotational semantics, some auxiliary structures are needed, in or-
der to define the semantic domains and express the clauses. The novelty here is
that the auxiliary structures, due to the overall algebraic strucutre of
SMoLCS, are algebraic specifications, so that we have algebraic specifications,
as abstract data types, of local informations, global information and of related
substructures, like denotations.

Concurrent Algebra

The concurrent algebra is the specification of an abstract data type correspond-
ing to a concurrent system modelling program execution. For modelling Ada we
have two labelled transition systems, the Task Transition System (TTS) and the
Program Concurrent System (PCS).
The states of TTS are behaviours, i.e. elements of the intermediate language
built inductively as terms from some combinators. Again inductively on the
structure of behaviours, the axioms formalizing the transitions rules are given.

The states of PCS are couples; each couple consists of a set of behaviours

(states of TTS) and a term representing some global information. The states
of PCS are themselves terms of the intermediate language, target of the denota-
tional clauses; the initial state corresponding to a program consists of just
one behaviour corresponding to the system task and an initial global informa-
tion. Then the rules corresponding to creation and termination of tasks gene-
rate states with a varying number of behaviours. The transitions of a state s
of PCS, say s = ({bhl,...,bhm},i) are obtained by composing the transitions as-
sociated by TTS to bhl,...,bhm, in three steps. First the (synchronous) transi-
tions which correspond to synchronizations of TTS transitions are produced (e.g.
rendezvous between tasks); then the transitions which correspond to allowed
parallel executions of synchronous transitions are produced (thus resolving pro-
blems like e.g. mutual exclusion); finally, general monitoring conditions are
imposed (e.g. priorities between tasks) in order to select those parallel tran-
sitions which become transitions of PCS.

Semantics

The semantics can be given operationally and observationally.
The operational semantics consists in associating, starting from the transiti-
tions, a (possibly infinite) labelled tree to each state of the system and hen-
ce also to programs via the corresponding initial states. This gives a meaning
to an Ada program in the sense that the tree (modulo some permutations and iden-
tifications of subtrees) already represents an abstraction (for the acquainted
reader, corresponding to Milner's strong equivalence [Milner 1980]. We say

that two states (programs) are operationally equivalent iff their trees coin-

cide.

468



However, it may happen that two programs modelled by different trees have to be
*• considered equivalent depending on the kind of observations which can be made.

Thus the whole specification includes also an observation part, which contains a
set of observation functions that check whether a state satifies an observa-
tion. Then two states (programs) are observationally equivalent iff they satis-
fies the same observations (formally if the observation functions coincide on
the two given states). Once we have fixed the observations, it can be proved

* that under some c nditions (see Astesiano & Reggio 1986a, Astesiano et al. 1985)
an algebra exists, the Concurrent Algebra, in which two states are equivalent
iff they are observationally equivalent; this algebra thus gives a semantics to
the states of PCS and to each of the subcomponents of those states, like be-
haviours (i.e. tasks), terms corresponding to subprograms and so on (formally:
the observational equivalence is a congruence).

* Since the right-hai.d sides of the denotational clauses, which are terms of the
intermediate language, are subcomponents of the states of PCS, they can be in
interpreted in the Concurrent Algebra. In this way the denotational clauses de-
fines a homomorphism from the algebra of the abstract syntax into a semantic
algebra some carriers of which are the carriers of the corresponding sort in the
Concurrent Algebra.

References

[Astesiano et al. 1985]
E. Astesiano, G.F. Mascari, G. Reggio, M. Wirsing:

* "On the Parameterized Algebraic Specification of Concurrent Systems"
Proc. CAAP '85 - TAPSOFT Conference, Springer Verlag, LNCS Vol. 185, 1985

[Astesiano & Reggio 1986a]
E. Astesiano, G. Reggio:
"An Introduction to the SMoLCS Methodology"

* Internal report, 1986.

[Astesiano & Reggio 1986b]
E. Astesiano, g. Reggio:
"A Syntax-directed Approach to the Semantics of Concurrent Languages"
To appear in Proc. '86 IFIP World Congress, (Dublin, Ireland), North

* Holland, 1986.

[Astesiano et al. 1986]
E. Astesiano, A. Giovini, F. Mazzanti, G. Reggio, E Zucca:
"The Ada Challenge for New Formal Semantic Techniques"
In Proc. of the 1986 Ada International Conference,

* Cambridge University Press, 1986.

[Bjorner & Oest 80]
D. Bjerner, O.N. Oest:
"Towards a Formal Description of Ada",
Springer Verlag, LNCS Vol. 98, 1980.

469



1-12

[DDC, CRAI 86]
E. Astesiano, C. Bendix Nielsen, N. Botta, A. Fantechi, A. Giovini,
K.W. Hansen, P. Inverardi, E.W. Karlsen, F. Mazzanti, G. Reggio,
J. Storbank Pedersen, E. Zucca:
"Static Semantics of a 'Difficult' Example Ada Subset" and
"Dynamic Semantics of a 'Difficult'Example Ada Subset" (two volumes)

[Dewar et al. 1983]
R. Dewar, R.M. Froelich, G.A. Fisher, P. Kruchten:
"An Executable Semantic Model for Ada"
Ada/Ed Interpreter Ada Project, Courant Institute, NYU, 1983

[INRIA 1982]
INRIA:
"Formal Definition of the Ada Programming Language"
Honeywell Inc, CII Honeywell Bull

[Milner 1980]
R. Milner:
"A Calculus of Communicating Pyotems"
Springer Verlag, LNCS Vol. 92, 1980

[Milner 1983]
R. Milner:
"Calculi for Synchrony and Asynchrony"
TCS 25, 267-310, 1983

[RM]
U.S. Department of Defense:
"Reference Manual for the Ada Programming Language",
ANSI/MIL-STD 1815A,
January, 1983.

[Uhl et al. 82]
J. Uhl, S. Drossopoulou, G. Persch, G. Goos, M. Dausmann,
G. Winterstein, W. Kirchgaessner:
"An Attribute Grammar for the Semantic Analysis of Ada",
Springer Verlag, LNCS Vol. 139, 1982.

470



* The Draft Formal Definition of Ada

An Introduction

Jan Storbank Pedersen

471

0



1. Background

2. Aims of the Project

3. Project Description 0

4. Technical Introduction

472



CHILL

- Student project at the Technical
University of Denmark

- Master thesis on static
semantics (1979)

- Final version accepted as
supplement to the CCITT
Z.200 recommendation (Oct. 1981)

- DDC has derived a CHILL
compiler from the formal

* definition

0

473



Ada

- Several master theses on
Ada Semantics (1980)

- Formal Definition of 1980
Ada (81-82) using VDM

- CEC multiannual programme
(DDC, Olivetti, CR)

- DDC derived its validated
Ada compiler

474



Lead DDC to:

- "Formal Methods to Industry" project
ESPRIT project: RAISE

- Formal definition of
ANSI/MIL-STD 1815A Ada
MAP project

475

S



Aims of the Project

- Highly readable

- Implementation independent

- Unambiguous definition

- Basis for proof system

- Basis for document derivation

4

476S



Project Description

* - 13 man years

- 2 year project (85-86)

- DDC,CRAI

IEI/CNR

Technical University of Denmark

* University of Pisa

University of Genoa

- Spxnsored by CEC

4

• 477



Two phases:

- A trial definition

- The full definition

,78



Technical Introduction

- Definition language
- Static semantics

- Dynamic semantics

A 79



Ada ASI AS2
Ambiguous Data type Data type
Grammar

LRM text Static Dynamic
Semantics Semantics

480



* The Draft Formal Definition of Ada

* Trial Definition of the

* Static Semantics

Jan Storbank Pedersen

431



To illustrate:

- A style or definition

- A definition structure

- Ways of modelling
specific Ada concepts

4 VA0



* Ada Concepts Covere

- Strong typing

- Overload resolution

- Information "hiding"

- Properties of objects

- Derived operations

- Generic units

- Static expressions

- Implicit declarations

- Scope and visibility

483



Overall Structure of the
Trial Definition

- Well-formedness formulas

Abstract syntax

- Semantic structures

484



Underlying2 Data Types

*- Modular approach

- Information hiding

- Concept oriented

4 "



Data Types

EXPRIL NNIEV ENCL-CONSTRUCTS LENERICS

ZESC TYPEZOPERAT IONS

486



Well-for medness

4, 37



. 0S,)

x ~~ .(.) .

00

)4 4 )U4-

-41

coi

o a-

m co riu0 co~

-H ) H U41 41
Iq -I co a4I .

.1 14. ri 0

o H 4- o

4- 4-)

0 4-J U

x 4J(0J
mU H) - to

4- .-
4.) 4 U) 4

0 ()5- 4J -HX

4) ) v u
In -H 4 w

A 4) m 4-iA$ -r-v44)F
.0 5.41

C0
0
uS 0

4C3



00

00

0-' ft

-4 4f

044 cl4J

I I Qct 4w
(b 4J -* n 11

oo Lo "D
E~

0~-44 9



4-)

4- (N- t-I

0* 0
CUUq 04v'

.rq x

(1 W
0 0

4-)-

4J) 0

4-J 4
10 9 10 40

H0)

(1) -4 :3 ~

0)0 -Hi
4-~ *

0H rQ-4 w U) 0

41 0 a t 1

aH) CO q C ()04
.r-4U W 4 W

.r-i a U44
4-) )-4 04-
r. w U 0 4-

>104- % 0)0

H13 * 1 0 4
&.. P- 4-

4' F-4b~

(N

490V



0Q

4I

r'4

44 COr

• A

v

**
44.&

491



Visibility%7

- 'Visible by selection'

- 'Directly visible'

- Hiding

- Homographs

0

49~2 0



peckag P is

SA: INTEGER;

packa& Q is
B :BOOLL4N;
C INTEGER;

end Q;

endP;

PackW body P is

SC : INTEGER -A; -- dhecuy ,be
D : BOLEAN Q.b; -- visible by slecion

Packag body Q is

A BOOLAN; -- hiding

E :INTEGER : -PA; -- visible by eocuon.
-- exPanded name

end Q;

UseQ;

F B C)LEA -= B -- direcuy visible
0 INTEGER -= C; -- drectly visible

end P;

9 493



S

Data Type: NAME__VIS

Sorts: NameVis, Usemap

Operations:

- To maintain the visibility
S

- To extract information related
to an identifier.

494



U)

0
L)

* '-4 u
) r-4 0~ M) H

>) > 41 4 -i E
-r a) rq q U)

z Q En3

0) 0)
S~ ~ -0 1 -I .-

~ V J '49



M q)
C) ) /

496I

z9



$4

SU

*0 I
,-)I

a) o*E

4~JUC-)

0o t

*Q Z I

w,--I

Ci .H1v0

rz C,

497



00

to
0 0t

o- t
Cl))

4JC)

o qi

Q) .Hb
to (D

Ad t
w c

*..-i '- ~ E

49



41i

0 0) 1

§ 
.

.3 41 C&

44't 14-)

4Q) H

0 4.L0 H

00

bi c~ L

H ,4J u -41lr-H 41 >

C') *Hj I-4 a)

4

441

4419



0

€III

.

-4-J

LH)

4) I

4.J

%-

4-))
u

4-,"o I "" o

500



rE-4

CU)
'04 A

r) <~~'

-U-I

VN 'i- J1QbIQ

<0 <4 <4 -'4 L 1j.,.

to u
r-4i

lw n %0

~591



Ci)
a)

0) 4
t:I 4-)

4"4
u. 

>

U) 0> U)

4)4 4 4) -v

01 C a41 W.
0 $4-H4

E~ X) ) H
0- w) '- (D a)

4)C4 q) 4 -t4 10 0

41 0 q

a)U t ) q- r_:z a 0) -
4(4 4)f T T k 0 r T1 c4-

IT -A )X4 IR tj~ U)
1% ) 44)iwL
k. 0~b~ 4-) q

C.4 0), C)
S4- Cak4q of I L

r. 4 (a ) - o )I. ~ .-Wa aI1 4 'N q0 q)
u q 0 q) 0- 0 m q) .w

q) 0 4 L4X w Q 4  U) ri "r-H , ,

ci q)4 - N > -- 1 Lq
q)0~' J %b) L4 4

0i U) U)

U)U) 0Uf)C xI po0"rqN --

I) v 0 : Q) q Q

1 10 U 04

502



Ix

"-4

L-9

U.) >

0

UU)

U) 4-4

z

%Q

to)Q

II to C

*' IQ) ~ i

> ) ~jr-41 -

0 503



00

00

T0

>- 41J

t Ii '4qi

j1 r.

~m

u)0

50

q) 1 0
q) wQ U)

~ .o~ >

IN ' Cb 0

1-504



-

°,'-6

Q) >

, I _q)

C)

R% '0 4-

v, -4 4.J ..+I a)

*N

*L w

441002 P.4 0 +

41

4505



-0

>0

C:TT
AJ Q) $

~Q) i

Z 411

'U I Z a
>4 -.- c

) '-4 It C:

co %f- oQ).
411

0 to G)Q)

q)

' Or- N m

506



*u
-H
10
U
0

oU-
-H

C0-

>

c U

0-507



U U

UH

ra a

-L4

U -o

4.ji i

0) S4

Cl) 5



00

44

00
411

(1)(>

r L

4j

Q )

0)

-1-4 51)9



04 71

*0 0

C,)

0)i tJwU
*00 cl(N

100

U)

0

.-4 04 w

C)

I. Olj

CI) m i 0o

510)



" Defintb.n
of Ada

THE SMoLCS METHODOLOGY
AND ITS APPLICATION TO

ADA FD - DYNAMIC SEMANTICS

EGIDIO ASTESIANO

Dept. of Mathematics - University of Genova
CRAI - AdaFD Genova Group

CEC-MAP Project
The Draft Formal Definition of

* ANSI/MIL-STD 1815A ADA®

* DDC - Prime Contractor CRAI - Contractor
IEI - Subcontractor
Universities of Genova and Pisa - Consultants

"1 1 A1.. -j , f ,l-. t1 adf-rnar ,, Ada J0l110 r oqrari ( ,

511



S

FORMAL DEFINITION OF THE SEMANTICS
0

OF PROGRAMMING LANGUAGES

S

The Ada Challenge:

- COMPLICATED CONCURRENT STRUCTURE

- "SEQUENTIAL" SYNTAX HIDING THE
CONCURRENT STRUCTURE 0

- INTERFERENCE BETWEEN SEQUENTIAL AND
CONCURRENT ASPECTS

- OTHER HOT ISSUES:
" Erroneous Executions & Incorrect Constructs
" Implementation Dependent Properties

" Time 0
" Partially Defined Interactions with external

Environment

- SIZE PROBLEMS OF THE FD 0

" Readability

" Use
0

" Maintenance

512 0



Overall Structure of the Ada FD

Dynamic Semantics

Two-Steps SMoLCS approach

1stiStep (Definition of the Denotational Clauses):

to each Ada program is associated a

program- state -expression

(a term in an "intermediate language")

(an expression of type STATE)

2nd Step (Definition of the Concurrent Algeb.1):

the actual meaning

of that prograw-state-expression

(the semantics of the term)

(the value of the expression)

is defined

513



0

COMPOSITIONALITY

First step

The program-state-expression associated to a

program is obtained by the composition of the

sub-expressions associated to its constructs

Second sten-

A value is provided not only to the

program-state-expressions, but also to every

constituting sub-expression

514



* STR U CTU RE OF program-state-exrpressions

* (1 beh&Fviour-eAoression} . Initial-Global-nf)

*sub--expression associated to the constant

program by the exec -Ssem -sT"

clause.

6 ehaFviour--expr-ession7 is an expression of

type BEHAVIOUR

*Example of exec-Prgrarz clause:

* exec-Program: PROGRAM -> STATE

* exec -Program (prog) m

((exec-Sy.stem-rs(prog))Iniia-Global-Inf)

515



Example of exec-System-Taskclause:

(for a program constituted by a single subprogram)

exec-S stew- Task (procedure P is ... end P) -

def 1i - elab-Package-Standard

in def 1i = elab-DC/( procedure Pis ... endP) i

i n exec- Main-PrograZ(P) 1i

where:

elab-Package-Standard: -> BEHAVIOUR

elab-Dcl: DECL -> LOCALINF -> BEHAVIOUR

exec-Main-Pvgrzaz: ID -> LOCALINF ->BEHAVIOUR

nown

exec-Stmt: STMT -> LOCALINF -> BEHAVIOUR

eval-Expr: EXPR -> LOCALINF -> BEHAVIOUR

one

5 16



'The
Dfaft
Fomnal

Defi h on
of Ada

DYNAMIC SEMANTICS
OVERALL STRUCTURE OF THE

FORMAL DEFINITION

DENOTATIONAL CLAUSES (Ist step)

Principles
- compositional translation into an intermediate

language;
- denotational inductive style (semantics as

homomorphism);
- local correspondence with the Language Reference

Manual

Structure
- correspondence with chapters and sections of LRM;
- for each clause

- concrete and abstract syntax:
- formal clause;
- line-by-line natural language explanation

(with detailed quotations from LRM);
- technical remarks;
- complete cross reference with other parts of

the Formal Definition.
0 517



PrDeiniple

stiltIc SI 1-mI' lives 4'ts Thstraci- data T pes.
t rans it loll S, ,stefm (,s al) instant iat ion of a
parameter izedl ahsifact data type:
observational semantics given by at Concurrent
Algebra satisfying some observational cofslrints

Structure
-behaviour part ITask Transition S-vsemh

global informationl
-synchronization', (Program Concurrent Systeml
-parallelism:ll

M~on I tofi n fg.

sernan ICS

In general ever). part can conlsist of a set of algebrai(
specif icat ions modellIing structures (e.g. behavioutfS
global informatiton, action f lags) and./or a set of
axiomis (let iing trans it ions (behaviour transit ions,
synchronous transitions ...)

5180



ASSIGNMENT STATEMENT CLAUSE

exec-lin91beI/ed-Stmt : UNLABELLED-STMT -

* LOCAL-INF ->BEHAVIOUR

* ~ec-1nabeIled-Stut (name := expr)li-

0 let task - Get-Task(Ii) in

1 def (left-val~type-den)- ev/-NA-ame (name) Ii

2 an d v - e rl/-Expr (e x pr) Ii

3 in def v'-aae-Subztp-Conv(v,type-den)li in

4 choose U PDA TE-STORA GEeft-val ,v,task) A

5 skip

6 or ERR-UPDATE(left-val,task) A

7 start-erroneous-execution

8 or MAKE-UNDEFINED(left-val,task) A

9 (1zlt-anra~ (i)

519



ASSIGNMENT STATEMENT
NATURAL LANGUAGE

LINE-BY-LINE EXPLANATION

The execution of an assignment consists of:

1 evaluating the variable name
0

2 and the expression, in some order which is not
defined by the language;

3 then the needed checks and subtype conversions are
performed;

4 finally, either the variable is updated with the value of
the expression

5 and the execution continues,

6 or, if an assumption on shared variables is violated,

7 then an erroneous execution starts,

8 or, if the task is abnormal, then the value of the
variable can become undefined as effect of

9 the abnormal completion of the task

520 0



ASSIGNMENT STATEMENT REMARKS

GeLTask is an operation on the local information which
returns the name of the executing task

The functions eria/-lame and eraI-Eopr give a
behaviour which returns respectively the denotation
associated to the given name and the value of the given
expression.

The function make-Subtp-Conv gives a behaviour which
converts the given value to the given subtype, making the
needed checks.

The functions start-erroneous-execution and
cowplete-abnormally give a behaviour which models
respectively the start of an erroneous execution and the
abnormal completion of a task.

UPDATE-STORAGE, ERR-UPDATE and
MAKE-UNDEFINED are three actions which model the
fact that the task respectively updates the given left
value with the given value in the storage, attempts
erroneously to update a shared variable and updates the
given left value with an undefined value (in the case of an
abnormal completion). 521



SYNCHRONIZATION

bh QUEUED-CALL(eidcalled,..ar-ass.prcain)~

bhl2 ACCEPT(eidcallkd.AD-aL-P-d> bh2 '

([bh1 ,bh 2 ),i ) RENDEZVOUS(called-P-6> ((bh1 I ,bh 2 '),i')

cond: IsJFirsL..Of.Queue(calling,called,eid,i) &

Is-..NoL-Abnormal (calling, i)

transf: F'= Make-In-Rendezvous(calling,i)

522



SYNCHRONIZATION COMMENT

The intuitive meaning of the given rule is that the two
given behaviour transitions (labelled respectively by
QUEUED-CALL and ACCEPT) can synchronize under the
condition specified in the "cond:..." part, producing a
synchronous transition (labelled by RENDEZVOUS) which
changes the global information as specified in the
transf:..." part.

The condition on the global information is that the calling
task is the first in the queue associated to the entry eid
of the called task and that the calling task is not
abnormal.

The transformation of the global information consists in
removing the calling task from the queue and recording
that it is suspended in a rendezvous.

523



OPERATIONAL SEMANTIC

aperational meaning

p rogram -state - e. p essi onl:

interpretation as an initial state of the
Program Concurrent System

(hence as the labelled execution tree starting *
from that initial state)

beha viour-eXpression :

interpretation as a state of the
Task Transition System

(hence by the labelled execution tree starting
from that state)

Methodological comment:

The operational meaning of states and behaviours
is the main guide during the definition of the
denotational clauses, and gives an immediate
intuition to the reader of the first step of the FD.

524



OBSERVATIONAL SEMANTICS

" Depending on what we want to observe some

observations are defined on the states of the

Program Concurrent System

(hence on the labelled execution trees

starting from those states)

" The observational value of any

* program-state-expression i s d efi ned by

its interpretation in the Concurrent Algebra.

" Two program -state-e.'pressions have the

same value in the Concurrent Algebra if and

only if their operational values (as states of the

Program Concurrent System) satisfy the

same observations.

525



* The observational value of any

behaviour-expression (and of any other

sub-expression) is defined by its

interpretation in the Concurrent Algebra.

9

* Two 6ehaviour-e..pressions (or any other

sub-expression) bh 1, bh2 have the same value

in the Concurrent Algebra if and only if for

every state context six], the two states

sIbhlI , sIbh2] of the Program Concurrent

System satisfy the same observations.

5

526



Observational Semantics (Explicit characterization)

S Proposed Schema

Basis define programs (and tasks, procedures,...)
as labelled trees modulo strong equivalence
(i.e. unordered branching and identification of
equivalent sons)

(an abstraction of operational/initial algebra semantics)

Explicit Equivalence

1 ) define an appropriate equivalence on program trees

* 2) define an appropriate set of formal contexts
(a concurrent system formalizing the external
environment)

3) define, depending also on the answers to a series of
formal questions about LRM, what should be an
observational semantics expressing the result
of a program in a context; presumably the result
should be parameterized on some equivalences

4) show that the equivalence in 3 coincides with the
one in 1, just showing that two programs different
for 1 have a distinguishing context formalized as
in 2 and 3.

527



UNDERLYING CONCURRENT MODEL

Overall Structure : flat structure"

The activity of a program is modelled
as a concurrent system

(Program Concurrent System = PCS)

Each component subsystem models the
activity of a single task

(Task Transition System = TTS)

Motivations for the flat structure:

Program execution driven by several different
structures:

ENVIRONMENT, DEPENDENCES, DYNAMIC CONTROL
FLOW.

No one of them evidently the most important •

The flat model results as the most balanced,

allowing to model all the Ada aspects without

any particular effort 528



PROGRAM CONCURRENT SYSTEM

Is a labelled transition system modelling

all the possible program executions

Labels identify the interactions of the program

with the external environment

Interactions with external files

- Dependences from the value of some

* global time

5 529



A state of the PCS defined from the states of the

subsystems corresponding to the executing task,

plus a .global information

Global Information =

information needed by more than one task

which is not exchanged by means of

synchronizations

GLOBAL ENVIRONMENT

STORAGE

TASKING INFORMATION

DEPENDENCES INFORMATION

FILE INFORMATION

OTHER INFORMATION ON
IMPL. DEP. ASPECTS

530



TASK TRANSITION SYSTEM

Is a labelled transition System modelling

the activity of a task in isolation

Labels identify the interactions of the task

with the rest of the program

access to the information shared

among tasks (GLOBAL-ENV, STORAGE,...)

synchronizations with other tasks

(RENDEZVOUS,...)

interactions with the environment

external to the program

(I/O ACTIONS, ...)

531



GLOBAL ENVIRONMENT

The environment in which a task is executed is
not "stable" (i.e. the denotation of some of the
program units it can use can be concurrently
"completed" )

The Global Environment is a global structure
recording the denotation of all the Ada entities
declared during the program execution

(Intuitively based on a map
from uniaue-dynamic-entity-identifications
to denotations )

The resolution of text-identifiers (i.e. the detection
of the unique-dynamic-entity-identification
associated to an identifier appearing in the text at
any point of the execution) is performed locally by
each task using a private (dynamic) structure
called LOCAL ENVIRONMENT

(Intuively based on a map
from text-identifiers
to unigue-dynamic-entity-identiOfi.ajn )

532 9



STORAGE

Objects created by a task are not

private to the task
S

(because of nesting and parameter passing

by reference)

The Storage records the values of all the objects

created during the program execution

To each object is associated in the Storage a

"sharing information" allowing to detect

erroneous accesses to shared variables

0 533



TASKING INFORMATION
S

Records the information about the status of the
entries of the task ( queues) and the information
about the status of the tasks

DEPENDENCES INFORMATION

Records the dependences structure among masters
Records the information about the master status

0

FILE INFORMATION

Records the status of file objects (open, ...) and the
information on the associated external file (name, ...)

0

IMPLEMENTATION DEPENDENT INFORMATION

Records the needed structures for the support of S

implementation dependent operations
(e.g. the 'SIZE attribute for objects and types)

534



- Composing TTS into PCS

SYNCHRONIZATION

* Defining the "minimal program actions"

Examples:

* Any truly sequential task action defines a corresponding
synchronous action (e.g. ADD-DENOTATION)

* The start end the end of a rendezvous define a synchronous
action involving the caller and the called task
(e.g. CALL & ACCEPT )

* Normal completion of a task defines a synchronous action
* together with all the tasks suspended in the queues of the

completing task
(e.g. COMPLETE-TASK

& QUEUED-FAILURE
& &...
& QUEUED-FAILURE)

50 535



" Defining the conditions on the Global Information
allowing those "minimal program actions"

Example:

U A task can complete abnormally only if it is abnormal
(COMPLETE-ABNORMALLY & ... & ... & QUEUED-FAILURE)

" Defining the transformation of the Global
Information involved by those "minimal program
actions"

Example:

* The final effect of the elaboration of a declaration is the
definition of a new denotation in the global environment
(ADD-DENOTATION)

" Defining the possible interactions with the rest of
the environment

Example:

* A write action defines an interaction with the environment
external to the program 536



Composing TTS into PCS

PARALLEL COMPOSITION

* Mutual Exclusions among the previous
) "minimal program actions"

Examples

* a task cannot enter into a queue while the called task is
completing

0

* to different tasks concurrently creating new objects are
returned different left values.

0

* Compound effect on the Global Information
* of a group of not mutually exclusive "minimal

program actions"

* General Rule:

a The resulting effect on the Global Information of
the execution of a group of not mutually exclusive

* "minimal program actions" is as if they would have occurred
in a sequential order

* 537



Composing TTS into PCS

MONITORING 0

* Defining t.he allowed (or forced) degree of parallelism 0

(effect of priorities)

General Rule:

* Any group of eligible tasks are allowed to execute

* If a delay has expired, the suspended task must be made
aware of that

* If several rendezvous are possible for the same task, then
that one with the highest priority is chosen

* Interactions with the external environment

Example

a I/0 action

538



0!

SMoLCS

0

• SMoLCS

METHODOLOGY OF SPECIFICATION
0

EGIDIO ASTESIANO - GIANNA REGGIO

* University of Genova - Italy

in cooperation with

MARTIN WIRSING
University of Passau - W.Germany

* APPLICATION TO ADA FD - CEC-MAP project

C. BENDIX NIELSEN, N. BOTTA, E. W. KARLSEN,
* J. STORBANK PEDERSEN (DDC-Denmark)

A. GIOVINI, F. MAZZANTI,G. REGGIO, E. ZUCCA
* (CRAI ' Geneva group, Univ. of Genova, Italy)

A. FANTECHI, P. INVERARDI (IEI - Italy)

* 539



0

SMoLCS

AN INTEGRATED APPROACH

0

SPECIFICATION OF CONCURRENT SYSTEMS

FORMAL SEMANTICS OF CONCURRENT
LANGUAGES

METALANGUAGE

(TOOLS)

540 S



SMoLCS

SMoLCS

Specification
S

Abstraction mechanisms

TARGET

Large (Multilevel) Systems.

0

Modylu arity/lierarchy
Parameterization

Languages with inteference of sequential

and concurrent features

2 steps approach

connecting syntax to an
underlying concurrent model

4 making concurrency explicit

* 541



SMoLCS

SPECIFICATION OF CONCURRENT
SYSTEMS

Concurrent system modelled as a
labelled (flagged) transition
system

Specification of a labelled
transition system as an abstract
data type

Specification of a concurrent
system as instantiation of a
parameterized abstract data type

Parameters -=-_SMoLCSI --- Concurrent system

542 A



LABELLED TRANSITION SYSTEMS

STATES S, s', ... , sI, s2, ...

FLAGS (f, f', ... , ,f f2, ... 

* TRANSITIONS triples (s,f,s')

usually written as s __L> s,

and axiomatized as:

* t s > s' =-true )

* Algebraic Specification of Transition Systems

* Abstract data types STATE, FLAG
0

* Transitions by axioms of the form

* cond > s f > s' - true

(universally quantified on the state or flag variables,

or their components)

* 543



Labelled trees

associated to labelled transition systems

f ff 1f f f
f 1 2

53 -

S 2 1 C1

.S

* to each state S
an associated labelled (possibly infinite) tree

Meaning of a label (flag) in S S
f represents (part of) the environment in which that

action can take place

Scall T read I S

f can be seen as
"what can be observed of the system from the

external environment in the state S"

544 0



Where does the branching come from?

intrinsic multicapabilities of actions

MREG(V.) -L IN(X). MREG(X) + OUT(V) MREG(V)

1 IN () S =MEG(V)

S' =MREG(X) S

*? not correct, then

parameterized capability
consider X as a parameter

0
then

MRG()-Le IN(X).MREG(X) + OUT(V).MERG(V)
X=N

* ~~MREG().MEG)

M RE G(V) M REG~o)
MREG() MRG~o)MREG( n)

nondeterminism from parallelism

*CALL (T1 E).P 1 IACCEPT E.P 2jCALL (T Ek ).P , Le S

CALL (TI E) ICALL(Tlj El A)P

0, ACCEPT Ej.P2 JP3  P ACCEPT E.P21 CALL(T E )P3
PljP2 CALL(T1E1)

S 545



COOPERATION BY LABELLED TREES

L(ocation) =MREG

S te-! MREG(1)1Z READ (L,X).P(X)

OUT(1

MREG~l)READ 7(L,0) READ (L,1)

MRE(1)P(O) P(1)

RESULT OF COOPERATION

OUT (1) 11READ (L,1) = L IN USE

S,

L IN USE

MREG(1) P(1)

S =-CALL (T, E).P1  ACCEPT E.P 2 j

CALL (T1 E) 1jJACCEPT E
T, T

S2

INTERN AL

Tj T
P; P2

546



SMoLCS OPERATIONAL MODEL

BASIC SCHEMA

CONCURRENT SYSTEM as a labelled transition

system constructed from some component

subsystems; each subsystem modelled itself as a

labelled transition system.

STATE of a concurrent system:.

- a set of states (of the component

subsystems)

some global information

< s 1/ s2/ - / , inf >

TRANSITIONS inferred from the transitions

of the component subsystems in three steps:

SYNCHRONIZATION

PARALLELISM

MONITORING

547



PARAMETERIZED SCHEMA
S

Basic Transition System---+-MoOSI- Final Transition System

Parameters

Three Steps Composition

Basic Transition System

I parameters for strict
synchronization

M I parameters for

~parallel composition •

parameters forIr monitoring

Final Transition System

500

548 . .. ..



SMoLCS

SYNCHRONIZATION

Transitions representing synchronized actions of

set of processes and their effect on global

information.

PARALLELISM

Transitions representing admissible parallel

executions of sets of synchronized actions and the

compound transformation of global information

* (mutual exclusion handled here).

MONITORING

Global abstract scheduling strategies imposed on

the system.

(e.g. interleaving, free parallel, priorities, ... )

* 549
- ,I .



0

SMoLCS

SYNCHRONIZATION SCHEMA
i

Starting from

BTS basic transition system with states bs and

arrow bf >

Compose a new system STS with:

- states <bs11...I bsn , inf >, where inf is

defined in INF

- transitions, with flags sf defined in SFLAG,

defined by an axiom schema

Iss(sf,bf I...Ibfn,i) = true A

( A -bsj bfj->bs'j) A Sit(sf,i,i )-true D

( bs 1i-i. bsn,i) sf__ > (bs I*."" bs'n,it)

where the operations Iss, Sit are defined by the

axioms ESYN C

STS as a Unction

STS: BTS, INF, SFLAG, ESYNC >

550 0



0 SMoLCS

BASIC SYSTEM

,WRITE(1,v)'A b~ WRITE(VL)>bst-

SYNC-SYST

bse-WRITECI vL> bs
cond: NOCOA'D

* transf: stgfv/1J

* bs1 SEND(ch.XL.>sAb REC(=c=hyJv>bs

bs1I bS2  TAU > bs, 1 bS25
c on d: NO COND

transf: NOTRA NSF

551



SMoLCS

PAR-SYST

bms1 ,stg> -a'--> (bms .,s'%Ig> A

<bms 2 ,stg> -TAU > (bms 2 7,,te,>

dims1 ,j bms 2 ,Stg> a//TAU> <bms1 'jbms 2 ,stg>

<bins, ostg> >=~= (bms,stg'> A
<bms 2 ,stg> .. WRITEI -.Y)--.> <bms 2%,stg> A

is-updating(1,a) = false

<bms~lbms2 ,stg> a// WRITE(i~L

SYST

<bmslbms1 ,stg> -~ ><bins Ibms ,stg,>

552



SMoLCS

PROBLEM
SEMANTICS OF LANGUAGES WITH

" STRONG INTERFERENCE BETWEEN
SEQUENTIAL AND CONCURRENT
FEATURES

" COMPLEX STRUCTURING

TYPICAL EXAMPLE ADA:

- Syntax devised for static checks not
corresponding to underlying
concurrent model

- Pseudo-sequential constructs:
(declarationsexpressions,

assignmentsprocedures)
involving possibly interactions of

* tasks (communications,
abortionsshared variables)

S - Program as a collection of modules

- Semantics parameterized on
* implementation dependent

features

S553



SMoLCS

AIM
SEMANTIC SPECIFICATION
METHODOLOGY SATISFYING SOME
REASONABLE REQUIREMENTS:

* SYNTAX-DIRECTED/COMPOSITIONAL
/DENOTATIONAL

-Meaning of a construct depending only on the

meanings of its components

formally a homomorphism from (abstract) syntax .
algebra to a semantic algebra

o DENOTATIONAL STYLE
- close to functional denotational style on

pseudo-sequential constructs

-interpreted as functional denotational semantics 0

on purely sequential programs

* COMPOSITION OF ABSTRACT
SPECIFICATIONS
-static structures specification

(storage, env i ronment,state) 0

- specification of a concurrent
underlying model close to the level of the language

(i.e. not a translation into a low level language)

554 0



SMoLCS

PROPOSED APPROACH

* COMBINATION OF
DENOTATIONAL
OPERATIONAL
ALGEBRAIC TECHNIQUES

*OVERALL STRUCTURE: DENOTATIONAL

IN TWO STEPS
* - IST STEP DENOTATIONAL CLAUSES

- SEMANTIC DOMAINS AND FUNCTIONS
- CLAUSES (LOOKING LIKE FUNCTIONAL

DENOTATIONAL CLAUSES ON
PSEUDO-SEQUENTIAL CONSTRUCTS)

- 2 ND STEP CONCURRENT ALGEBRA CSEM
-CONCURRENT SYSTEM SYST REPRESENTING

* PROGRAM EXECUTIONS
- OBSERVATIONAL SEMANTICS FOR SYST

REPRESENTED BY CSEM

-LINK BETWEEN THE TWO STEPS
THE CARRIERS OF THE CONCURRENT
ALGEBRA CSEM ARE DOMAINS FOR THE
SEMANTIC FUNCTIONS DEFINED BY THE
DENOTATIONAL CLAUSES

0. 555



0

SMoLCSSEMANTIC FUNCTIONS AND DOMAINS

" Prog: PROGRAM >ANSWER
ANSWER = states of the concurrent system

(interpreted in the concurrent algebra)
=CSEMstate

" Stat : STAT -> ENV-> CONT -> CONT
CONT = states of processes(interpreted in CSEM)

=CSEMbh 0

" Exp : EXP-> ENV->ECONT->CONT S

ECONT =(VAL -> CONT)

" Dec : DECS-> ENV->DCONT->CONT
DCONT = (ENV -> CONT)

556



SMoLCS

DENOTATIONAL CLAUSES

ProgIprogram bi] - initial(StatiblIp0 nil)

*initial :CONT >,- ANSWER
initial(O) = < 0, stg0 >

(i initial(O) = o(oo) )i

Statl st1; st? JpO = Statl st. Ilp( Statj st 2 IPO)

Exp[xlpk =contof(p(x),k)

*contof LOC XECONT ->CONT
contof(1,k) =+ X v READ(1,v A k(v)

VAL

* [ contof(1,k) = Xo. (k(o(l)))

X~ v. READ0,vA k(V) E FUN CT(VAL,BEHAVIOUR)

Statlwil be "~ stIP0
f ix X y.Explbep(X bv.cond(bv,Statlstjp y,O))

fix f funct(bh, bh) -> bh
(fix EIICONT -> CONTI-> CONT 1)

Sicreate pwceal blIp&
CREATE(Statlbllp nil) A e

* 557



SMoLCS

SEMANTIC FUNCTIONS AND DOMAINS

" Prog : PROGRAM -- > ANSWER
ANSWER = states of the concurrent system

(interpreted in the concurrent algebra)
CSEMs tate

" Stat• STAT -> ENV->BEHAVIOUR
BEHAVIOUR = states of processes

(interpreted in CSEM) 0

=CSEMbh

" Exp: EXP-> ENV-> BEHAVIOUR

" Dec : DECS-> ENV-> BEHAVIOUR

553



SMoLCS

DENOTATIONAL CLAUSES

Prog~pnogram bi] = <Stat~blIp0 , stgo >

Statl st I; st 2 lP& O Stat[ stI1p) ;(Statl st2 Ip)

* Expjxlp =choose VAL in READ(l,v) A return(v)

Stat~il be do stip =

trap [End-While -+ skip] in
cycle

def by - Exp~beip in
cond(bv, StatIstip, exit End-While)

Sicreate process blip -

CREATE(Statlbllp) A nil

* 559



SMoLCS

METALANGUAGE
ASSOCIATED TO THE METHODOLOGY

MAIN FEATURES

APPLICATIVE KERNEL + syntactic sugar
( denotational clauses)

ALGEBRAIC SPECIFICATION CONSTRUCTS
(SMoLCS concurrent system)

PRIMITIVE SPECIFICATIONS (signature +axioms)
CONSTRUCTORS ( + , enrich, derive,...)
LIBRARY OF PARAMETERIZED SPECIFICATIONS
SYNTACTIC SUGAR

INTEGRATION OF APPLICATIVE AND
ALGEBRAIC by associating models to the algebraic
specifications, connecting syntax to the
observational semantic algebra.

5W'J•



of Ada

BEHAVIOUR COMBINATORS AND

RELATED AXIOMS

ACT A bh ACT > bh

ACT A bh is a behaviour which can perform the action
ACT and become the behaviour bh

bh ACT > bh'

bh ; bhl ACT >bh'; bhl

bh ; bhl is a behaviour which consists in the sequential
composition of bh and bhl.

skip ; bh = bh

skip is a behaviour modelling the normal transfer of
control to the next behaviour

exit ev ; bh - exit ev

exit ev is a behaviour which interrupts the normal
execution flow, specifying an abnormal treatment,
depending on the value ev.

561



trap... in ... combinator

trap hnd in skip = skip

trap hnd in exit ev = brrd(ev) IF ev E Dom(e*)=true*

trap hnd in exit ev = exit ev IF ev E Dom(av=false

bh ACT >bh

trap hnd in bh ACT trap hnd in bh'

The behaviour trap hnd in bh behaves as bh until bh
perform nexit to a label ev; if ev is trapped by the
handler (a map from labels in behaviour) then it
behaves as specified by the handler otherwise the exit is
propagated.

cycle combinator

cycle bh - bh ; cycle bh

The behaviour cycle bh executes infinitely the activity
of the behaviour bh.

562



def..in COMBINATOR

bh ACT > bh'

def x = bh in bhl ACT > def x = bh" in bhl

def x = return v in bh I -bhilv/x
def x= exit ev in bh I exit ev

cdef x = bh in bhi is a behaviour which consists in bh,
normally terminating with the production of a value v,
followed by bhlJv/x. If bh terminates abnormally then
the second behaviour is not executed and the control is
transferred to some enclosing behaviour.

5

... 563



choose...or... COMBINATOR

bh1 -ACT > bh'

choose bh1 or bh 2 ACT > bh'

choose bh1 or bh 2 =choose bh 2 or bh 1

choose bhl or bh2 is a behaviour consisting in the
nondeterministic choice between bhl and bh2. 0

def x-bhl and y-bh2 in bh"

is an abbreviation for

choose def x-bhl in def y-bh2 in bh'
or def y-bh2 in def x-bhl in bh'

and models a nondeterministic choice of the order in
which the first two behaviours are executed.

564 S



S

" The Draft Formal Definition of Ada

* Other Dynamic Semantics Aspects

Jan Storbank Pedersen

565



0 c0

ci z,

_I IC.)co

czQ

S ~.)C-

CAI

- *CA

0L -z0c

C4 
M U~

'0z 0 >~~u-

-4o
d)C cz 6 0

-o o 0cz 0~

5--6



CA C

Q- M

tf) V-

cz M M CA c

*z C) IM0 ~
-. 5 > C n U" c

C4A

= CA CA

CA c

Z-A C)

cn &Z o

*1: CA0)

CA E

567



cz0

o--

ol

iz

~568



cr,

u 0z

oI 0
cn -l

E CA X(A 0 l)
.- z

E0

0 *~ 0569



0 0

10-4

a 0 0

00

4, C 0 uc

00 0 CAz

U) 4)

0-40

547r



o C-Z

COO),

C,, _

I 4) -4) 4

0 c571



1-Z0

00

00

04
C:.

1-

M00
c) 0 C

E E
>~)

CN LL4

o572



00

* ft

zz

q 0
u 0

0
I x00

z 573



00

E (A C134)

4)7



04 E

C-1

-)
* -04

I4 04 1~

T T 04-
H

4 .) Z o

a* Q) 13

00
-H-

4JJ

C~C:

O:
*r0 0)

$4- a)' 0

wrt 0 )
Or~ a

54575



:D0

0

04 0

4

0 C

Q4 -4

4-)) 4- e

$-4~

a~4 Z o04

Oa) 4-4

000

41 Q))Q
IVa Zi Q)

aio
r1441

a)4 I a a 4

0 w-

576



S-

00
>r

00

00
z-

4JI

*
£ ~ro

ro*1

0t 0

II4-4

0))

$44 41I

41 ~ 1 I4 )ak H4 00 1 1 (zto4)u40 1 1 j 0
UQQj Cc E

m 00
II,44

* 0 44
$4' rtiQ

10 )

577



0

x
z 4-4

u X H r

14

>1

o E

Urqo
0 4.;~ IaC

N4 Q) 4.

00

IQ a4 r
ur U, (

V)Q)a
v-4 a4

QI-)

07 Ft4



X.4

00

-l-

0 C )
(D)0

*4 04

0 00Q

(t04) Q)

41 a)

>1 -L) ) ::3

$0

0
rV ) 0)O - NC4r

04 5790



104

UU

rAH 4-3

%J r1i 0
$-4

04. U)Q
o 04

>

rxra

tQ,
i 4 H 4~

04

T) I t Q t

4 a) 44 Q) I Q

41i
C/)

Q4-

0 m4

A u i

N~ Q) )
V

C)rnW



0

0

*
4.)
.1-I

x
C) C)

.J~)*
0)

o
-H

* 4~Jz W
F1

0.4

I'
C)

* rHz
i-1

0~cZ~
CD) C) -H~-~

43 0
i.-I

~ ~
0) k~ WI

4.) ~) w
4.) *~ 01

* CJTi ~Z
It
Q)o I ~C)o

r-4

* A

m I

Ci ~~NCe)~Lr)

U~)

0 5 ~i



00
0

00

II

o to

4- -W) V)r -

41 (1 U) .1H
4r) I Q t)rH

0) (f al-I
r I0) Iw 41 Q

m o U44 J-'
I Q) - 41 m Q

A / u % -

v Q) Q)

U)0 r- q O10

r~582



4.) Z
0

4- >

4-4-4

44 0 I H

0 0)Q v

Q)4 U)
3 0

U)u

0 Uf)

4J 0 O tHo
1. 4-4-'

0 U)4 .
04 U) -j 4 M 'L

0 a- . -
-I- (1 E-) o

*L 4-1 U4)
E) I 1 m~r o Q)

0 ) 0 04.

o o)
Q) U)1

Q )

4-n

(J)5 8 3)



H)

4." -,-4

I 4J I U)
0 r3 0 a)

I.I

4- I U)

0000 0•

W co 1 N

I Ii 4.qt

0 4 1 m

C/C3
44

C/)cc 4- 'L 1

o ,.--, V) ,. Q

Iq Ir 4

I 44 a)

0 - N 0. -1

-0 0 1 " ) C d" - -

0 41
Qot

(d E)

1 w- 4.) H0-,

4-1 H

A (n) 0

v 0 C

584



Ir

0 4- 1

0 0

* 0 0

4 0 J) U)

E 41

0 U)
1l 44 C)

4- - 4il -) rd t
0 ;W

Q) 0) 41 r-4

.0) LI3 41E.
4.) 4 .3) flQ

cl) II I U)i .0~
4.j 41  U)

o II

0 Q)0
U) 4

.co I% Q i Q) U)4

HI Q 4Jg) 04

4J fr -4QJQ)
Q.., --A Hz ) c

ClC- Cl

U~Q)

44 58



~II00
z 1-IHH

4~

o L4 - 1

0 -1 1) rHH4

r-H 1 044-

ro a) 75 4- d

41r4 1 i I

a) 4J -H.L I a

I- a-s Q)0 , 4 -IM-0-4

E) Q) it t3 r

m1 W0) r 1  0C~r

r- S4 4-4 4 -1 a)

-H 04 $40
Ic- -) O-- 4- 1 4

Q) Q) 11 4 .)l44 44
73~ 14 0 r 000

0 )0

a4'

A () )

586



0>

00
00-

cj

444

4J4

4-4

44 0 <~

0 0 -4 ki ,

4- 4 Q)
m) Q) 0 r

00

-LJJ

4- 4-,

T ~ >1 a 4J
CoG)1 0 )4

1 H4 C: o a
E4-4

*a A 0

Vi 0

* 587



040

0

00
>o

T00
H 04

I4 04

K4 4

14 a4 ) 4 U)
m0) Q)

0c -H I ) a Q) u

04
>0 04 4

Z 04 04 0-U)

to)%~0 I r

Q) 04 a ) q 0

0 Q 0 I s .

Q)I I I E- -4
oCI m~4)0~ 10)

IH
00 "0 Q. l 0 $

V 
0

588



* 0

00

Q)
0

Q) 4.
04

4* Z

o u
0)

4- C) )J
0 a

41Jr

o i k-

x C

* A

V a

* .589



00

~X404

WI - U 4)

-HW 04

x~04

C-H x H .IH u)

41 04 a'-A aH - Q -.c

IVJ 44

C: 4X Xr<E4 -H
4-' ' I -

~ U Xc:

41-

A 4J1 I44I

HI 0 0i .
V-49

0Or50



0J

00

*4

00

I-ii

oo Q)

4~44

A q)
v Q))

C) C

59



00

CD)

10 0)0
0 4-)4-) p41

Q) ClcQ z
ACT 4U 0 L

4.)4 C(L~J U4

~4- -%%4

04 ElI 'I '

A Q0
N*.
V

V-4 4

I.-f

592



EGIDIO ASTESIANO

UNIV. OF GENOA

FORMAL DEFINITION

SPECIFICATION

VERIFICATION

* (ULTIMATE) AIMS IDENTICAL

* guaranteeing reliability

* easing maintenance

* enhancing productivity

* DIFFERENT AS TOOLS

(hence immediate aims)

393



USING, FOR EXAMPLE

the algebraic framework

(signature, axioms, I _algebras)

presentation models
(syntax of specification)

semantics

for a fixed semantics
signature = syntax of the language/specification

axioms = semantics " of
0

specification
presentation = abstract data type+ .

(semantics)

verification prove that a concreate algebra
implementas a specification
(that a [derived] property is satisfied)

definition syntax (signature) is given

provide semantics

axioms an algebra
(abstract data type (a model)

594



LESS ABSTRACT AND
TECHNIQUE-FREE VIEW

MAIN AIMS OF A - FORMAL DEFINITION

standard reference for implementors

(specification)

semiformal guide for users

(developing and deriving natural
language explanations)

basis for formal methods of proofs

(verification)

595



A CLOSER LOOK 0

GUIDE FOR SEMIFORMAL CHECKS

(operational semantics with natural
language expalanations, particularly suited
to common users)

FORMAL PROOFS

? iece me ts specif./property ?
FD L

FD of that program
full Ada

tools derived properties (Ada subsets
from Ada FD Ada restrictions

derived proof systems

FD automatic "performer 0

(Rapid prototyper)

Development of correct programs from a
specification via FD

(gap to be filled)
probably by transformations

596



TOWARD VERIFICATION& SPECIFICATION
0 OF PROGRAMS

LIFTING THE LEVEL OF ABSTRACTION

Usually, Auxiliary Structures
(states, storage, environment, ---)

hence enlarged signature
(e.g.,"auxiliary domains" in denotational semantics)

Theoretical Approaches for Abstraction
find a specification of which the given FD
is an implementation

* keeping the language syntax (O.K.)
(and compositionality)

(essentially modifying auxiliary structures
& related axioms)

* changing the language syntax
- not O.K. for semantic def.
- may be O.K. for other purposes

special case: observational semantics

practical formal approach

derive properties (higher level prop)

* equivalences
* semantics of composed constructs

597



FD AS A SPECIFICATION

" basic constraint on an FD
keep the language syntax

" secondary, but worldwide accepted, constraint
compositionality/syntaxdirected semantics

(mathematically : semantics is a homomorphism)
give meaning to each construct by composing

canonically the meanings of subconstructs

" optional Constraint
semantics with local correspondence to an

informal, usually operational, explanation

compare to
" Specification of Programs

no compositionality constraints/global properties

* Verification Methods
* aimed at higher level properties S

(derived properties)
" at their best compositional, but possibly

w.r.t. different syntax (preprocessing
transformation)

593

0



LIST OF ATTENDEES

Egidio Astesiano adafd @ icnucevm.bitnet
Department of Mathematics
University of Genova & CRAI
Via L.B. Alberti 4
16132 Genova
ITALY
+39-10-515142
Telex: 271114 UNIVGE I

Patrick de Bondeli
CR2A and AEROSPATIALE/Space Division
14 Boulevard Jean Mermoz
92200 Neuilly-S-Seine
FRANCE
Office: 33-1-47689797
Home: 33-1-47220614

Richard Carver
Department of Computer Science
Box 8206
N.C. State University
Raleigh, NC 27695-8206

William L. Caudle
Sperry Corporation
3500 Parkway Lane
Suite 600
Norcross, GA 30092
(404) 263-1605

John Chludzinski JChludzinski@Ada20.isi.edu
Institute for Defense Analyses
1801 N. Beauregard St.
Alexandria, VA 22311
(703) 824-5518

Norman Cohen NCohen@Ada20.isi.edu
SofTech, Inc.
One Sentry Parkway
Suite 6000
Blue Bell, PA 19422-2310
(215) 825-3010

Paul M. Cohen PCohen@Ada20.isi.edu
AJPO/DoD Technology Analysis Office
Pentagon 3D139
Fern Street
Washington, DC 20301-3081
(202) 694-0211

A-1



Mark R. Comwell cornwell@nrl-css
Naval Research Lab
Code 7590
Naval Research Lab 0
Washington, DC 20375
(202) 767-6698

Don Couch
8 Lakeland Dr.
Lawton, OK 73501

Robert Cutting
Sperry
Atlanta Development Center
3500 Parkway Lane
Norcross, GA 30092
(404) 263-1676

Patricia W. Daggett
Data General Corporation
62 T.W. Alexander Drive
Research Triangle Park, NC 27709
(919) 248-6144

Steve Eckmann Eckmann@Dockmaster
SDC
2525 Colorado
Santa Monica, CA
(213) 820-4111

John Faust Faust@RADC-MULTICS
Rome Air Development Center
RADC/COTC
Griffiss AFB, NY 13441
(315) 330-3241

Clarence "Jay" Ferguson CFerguson@Dockmaster
NCSC
ATTN C324
9800 Savage Road
Fort Meade, MD 20755-6000
(301) 850-7161

Peter M. Fonash FONASH@ISIF
Defense Communications Agency FONASH@EDN-VAX
1860 Wiehle Avenue
Reston, VA 22090
(703) 437-2189

Helen Gill gill@mitre
MITRE
1820 Dolley Madison Boulevard
McLean, VA 22102
(703) 883-7980

A-2



Dale J. Goumer
Magnavox Electronic Systems

0 1313 Production Road
Fort Wayne, IN 46808
(219) 429-6000

Marc Graham
Sperry Corporation

0 3500 Parkway Lane
Suite 600
Norcross, GA
(404) 263-1621

Jeani Hackett
0 SofTech, Inc.

3100 Presidential Dr.
Fairborn, OH 45324-2039
(513) 429-2771

Scott Hansohn Hansohn@HI Multics0 Honeywell SCTC
2855 Anthony Lane So.
Suite 130
St. Anthony, MN 55418
(612) 782-7144

* Bret Hartman hartman@rti-selResearch Triangle Institute

Research Triangle Park, NC 27709-2194
(919) 541-6110

Brian Holland brian@TYCHO0 NCSC, C3 Holland@Dockmaster
9800 Savage Road
Fort Meade, MD 20755-6000
(301) 859-4494

Steven Holtsberg sdcrdcf!steve@ucla-cs
0 System Development Corporation

2525 Colorado Place
Santa Monica, CA 90406
(213) 821-4111 x5672

Ronald D. Hubbard, Jr.
* Odyssey Research Associates

1283 Trumansburg Road
Ithaca, NY 14850
(607) 277-2020

A-3



Dale M. Johnson dmj@mitre-bedford
The MITRE Corporation
Burlington Road
Bedford, MA 01730
(617) 271-8436

Roger B. Jones USENET:.. !mcvax!ukc!stc!rbj
International Computers Limited
Eskdale Road
Winnersh, Wokingham
Berkshire RG 11 5TT
ENGLAND
0044 734 693131

John M. Kinsley
Link Flight Simulation Division of Singer
P.O. Box 1237
MS 521
Binghamton, NY
(607) 772-4009; secretary 772-4126

Kenneth Kung KKUNG@USC-ECLA
Hughes Aircraft 618/Q315
P.O. Box 3310
Fullerton, CA 92634
(714) 732-0262

Nancy Leveson Nancy@ics.uci.edu
University of California at Irvine
ICS Department
Irvine, CA 92717
(714) 856-5517

Timothy E. Lindquist Lindquis@asu (CSNET)
Computer Science Department
Arizona State University
Tempe, AZ 85287
(602) 965-2783

Davkd Luckham Luckham@SAIL
Stanford University
ERL 456
Electrical Engineering
Stanford, CA 94305
(415) 723-1242

Andrew D. McGettrick
Computer Science Department
University of Strathclyde
Livingstone Tower
Glascow G I 1XH
Scotland, U.K. -
(within UK) 041-552-4400 (x3305)

A-4



John McHugh MCHUGH@UTEXAS
Research Triangle Institute
Box 12194

-_- Research Triangle Park, NC 27709-2194
(919) 541-7327

W.T. Mayfield TMayfield@Ada20.isi.edu
Institute for Defense Analyses
Computer and Software Engineering Division
1801 N. Beauregard St.
Alexandria, VA 22311
(703) 824-5524

Mark Miller
Commander - CECOM
ANSEL-SDSC-SS
Fort Monmouth, NJ 07703

Harlan D. Mills
IBM
6600 Rockledge Drive
Bethesda, MD 20817
(301) 493-1495

Charles S. Mooney
Grumman Aerospace Corp.
Bethpage, NH 11714
(516) 575-8203

Gilbert Myers GMYERS@ISIF
Naval Ocean Systems Center
Code 423
San Diego, CA 92152
(619) 225-7401

LCDR Philip A. Myers PMYERS@Ada20.isi.edu
U.S. DoD (DUSD R&AT)
Ada Joint Program Office
3D139
1211 Fern Street, C107
Pentagon
Washington, DC
(202) 694-0209

Karl A. Nyberg NYBERG@ISIF
Grebyn Corporation
P.O. Box 1144
Vienna, VA 22180
(703) 281-2194

A-5



Myron Obaranec
U.S. Army
CECOM
AMSEC-COM-AF
Fort Monmouth, NJ 07703
(201) 544-4962

Jan Storbank Pedersen KHansen@USF-ISIF.ARPA
Dansk Datamatik Center
Lundtoftevej Ic
DK-2800 Lyngby
DENMARK
+45-2-872622

Richard Platek RPLATEK@ISIF
Odyssey Research Associates
1283 Trumansburg Road
Ithaca, NY 14850
(607) 277-2020

David Preston ebooth@Ada20.isi.edu
ITRI
4550 Forbes Boulevard
Suite 300
Lanham, MD 20706
(301) 459-3711

Edmond Schonberg Schonberg@NYU
New York University
251 Mercer Street
New York, NY 10012
(212) 460-7482

Michael Schwartz MSchwartz-@Dockmaster
Martin Marietta Information &

Communications Systems
Mail Stop L0402
Denver, CO 80201
(303) 977-0421

Jerry Shelton vrdxhq!jhs@seismo
Verdix Corporation
14130-A Sullyfield Circle
Chantilly, VA 22021
(703) 378-7600

Craig David Singer cds@duke or cds@rti
Research Triangle Institute/Duke University

1315 Morreene Road #2G
Durham, NC 27705
(919) 383-4287

A-6



Brian Siritzky sirit7iy@acf2 or
New York University cmcl2!acf2!siritzky
251 Mercer Street
New York, NY 10012
(212) 460-7239

Gary R. Smith
Texas Instruments
Electronic Warfare Systems
5825 Mark Dabling Boulevard
MS 3719
Colorado Springs, CO 80919
(303) 593-5359

Ryan Stansifer ryan@Purdue.edu
Purdue University
Department of Computer Science
West Lafayette, IN 47907
(317) 494-7281

K.C. Tai USENET mcnc!ncsu!kct
North Carolina State University
Department of Computer Science
Box 8206
Raleigh, NC 27695-8206
(919) 737-7862

* Bill Tiegs
Sperry Corporation
Software Systems, Computer Systems Division
Sperry Park
P.O. Box 64525, MS Y41A6
St Paul, MN 55164-0525

* (612) 456-7385

Friedrich W. von Henke vonHenke@SRI-CSL
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

-- (415) 859-2560

Steve Welke SWelke@Ada20.isi.edu
107-B Cresap Road
Charlottesville, VA 22903

A-7



Distribution List for IDA Memorandum Report M-241

NAME AND ADDRESS NUMBER OF COPIES

Sponsor

Dr. John P. Solomond 2
Director, Ada Joint Program Offices
The Pentagon, Room 3D139
Washington, D.C. 20301

Other

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

LIT Research Institute 1
4550 Forbes Blvd., Suite 300
Lanham, MD 20706

Mr. Karl H. Shingler 1
Department of the Air Force
Software Engineering Institute
Joint Program Office (ESD)
Carnegie Mellon University
Pittsburgh, PA 15213-3890

IDA

General W.Y. Smith, HQ 1
Ms. Ruth L. Greenstein, HQ 1
Mr. Philip L. Major, HQ 1
Dr. Robert E. Roberts, HQ 1
Ms. Anne Douville, CSED 1
Dr. Richard L. Ivanetich, CSED 1
Mr. Terry Mayfield, CSED 2
Ms. Katydean Price, CSED 2
Mr. Steve Welke, CSED 2
Dr. Richard Wexelblat, CSED 1
IDA Control & Distribution Vault 3

Distribution List-1


